Neuroscience
-
Comparative Study
GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice.
Inhibitory neurotransmitters, γ-aminobutyric acid (GABA) and glycine, are transported into synaptic vesicles by the vesicular GABA transporter (VGAT). Glutamate decarboxylase (GAD) is a GABA-synthesizing enzyme and two isoforms of GAD, GAD65 and GAD67 are encoded by two independent genes. There was virtually no GABA content in GAD65/GAD67 double knockout (GADs DKO) mouse brains. ⋯ The severity of cleft palate and omphalocele was evaluated by elevation of palate shelves and size and liver inclusion of omphalocele, respectively. We observed that the phenotypes of cleft palate and omphalocele in GADs DKO mice were more and less severe than those in GAD67 KO and VGAT KO mice, respectively. These results indicate the significant contribution of not only GAD65-mediated GABAergic but also glycinergic transmissions to both palate and abdominal wall formations.
-
Tanshinone IIA (TSA) is a lipid soluble agent derived from the root of Salvia miltiorrhiza (Danshen). This plant is a traditional Chinese herb, which has been used widely in China especially for enhancing circulation. However mechanisms underlying its efficacy remain poorly understood. ⋯ TSA treatment after middle cerebral artery occlusion, markedly reduced infarct size, and reduced the expression of caspase-3 and caspase-8. These changes were considered protective and were generally proportional to the dose of TSA used. These results suggest that TSA may effect neuroprotection by way of reduction of the extent of cell inflammation and death within affected regions.
-
In a previous study, we demonstrated that inflammation suppressed inward rectifying K(+) (Kir) currents in satellite glial cells (SGCs) from the trigeminal ganglia (TRGs) and that this impairment of glial potassium homeostasis in the trigeminal ganglion (TRG) contributed to trigeminal pain. The aim of the present study was to investigate whether activation of GABAB receptors modulates the Kir current in SGCs using in vivo patch-clamp and immunohistochemical techniques. Immunohistochemically, we found that immunoreactivity for glial-specific Kir channel subunit Kir4.1 and the GABAB receptor was co-expressed in SGCs from the TRGs. ⋯ Baclofen-induced potentiation of the Kir current was abolished by co-application of 3-amino-2-(4-chlorophenyl)-2-hydroxyprophylsulfonic acid (saclofen). In addition, baclofen significantly potentiated the density of the Ba(2+)-sensitive Kir current, and resulted in hyperpolarization of the mean membrane potential. These results suggest that activation of GABAB receptors potentiates the Kir current in SGCs and that GABA released from the TRG neuronal soma could contribute to buffering of extracellular K(+) concentrations following excitation of TRG neurons during the processing of sensory information, including the transmission of noxious stimuli.
-
Apart from therapeutic discovery, the study of mild traumatic brain injury (mTBI) has been focused on two challenges: why do a majority of individuals recover with little concern, while a considerable proportion suffer with persistent and often debilitating symptomology; and, how do mild injuries significantly increase risk for an early-onset neurodegeneration? Owing to a lack of observable damage following mTBI, this study was designed to determine if there were changes in neuronal morphology, synaptic connectivity, and epigenetic patterning that could contribute to the manifestation of persistent neurological dysfunction. Prefrontal cortex tissue from male and female rats was used for Golgi-Cox analysis along with the profiling of changes in gene expression (BDNF, DNMT1, FGF2, IGF1, Nogo-A, OXYR, and TERT) and telomere length (TL), following a single mTBI or sham injury in the juvenile period. ⋯ The results from the neuroanatomical measures and changes in gene expression indicate that the mTBI disrupts normal pruning processes that are typically underway at this point in development. In addition, there are significant interactions between the social environment and epigenetic processes that work in concert to perpetuate neurological dysfunction.
-
The present study has been designed to investigate the potential of rifampicin [Pregnane X receptors (PXR) agonist] in experimental dementia. Aluminum chloride (AlCl3) [100mg/kg, p.o. for 42days] was administered to Wistar rats (n=6) to induce dementia. Morris water maze (MWM) test was used to assess learning and memory and rota rod test was used to assess locomotor activity of the animals. ⋯ Combined administration of ketoconazole (a PXR antagonist) and rifampicin to AlCl3-treated animals reversed the rifampicin-induced protective effects. Therefore the results obtained from the study indicate a defensive role of rifampicin in memory dysfunction which may probably be due to its anti-cholinesterase, anti-oxidative, anti-inflammatory and amyloid lowering effects. Moreover the study speculates the potential of PXR in the pathophysiology of dementia which is subject to further evaluation.