Neuroscience
-
Serotonin (5-HT) and norepinephrine (NE) have been implicated in the mediation of endogenous analgesic mechanisms via the descending inhibitory pain pathway in the brain, and dysfunction in both the 5-HT and NE systems has been suggested as an etiology of fibromyalgia (FM). Given that 5-HT reuptake inhibition in the brain appears to be associated with pain reduction, this mechanism might exert an analgesic effect also on pain associated with FM. In this case, it would be of interest to investigate the correlation of 5-HT transporter (SERT) occupancy with in vivo analgesic effect on pain associated with FM. ⋯ This finding concerning the precise correlation of SERT occupancy with in vivo analgesic effect on pain associated with FM is reported here for the first time. SERT occupancy level above 70% was necessary for AS1069562 and duloxetine to exert significant analgesic effects on muscular pain. These results suggest that SERT occupancy level is useful in determining appropriate analgesic doses of AS1069562 and duloxetine for treating pain symptoms in FM patients.
-
Early degeneration of pedunculopontine nucleus (PPN) is considered part of changes that characterize premotor stages of Parkinson's disease (PD). In this paper, the effects of unilateral neurotoxic lesion of the PPN in motor execution and in the development of oxidative stress events in striatal and nigral tissues in rats were evaluated. The motor performance was assessed using the beam test (BT) and the cylinder test (CT). ⋯ This significant increase of CAT EA persisted in the nigral tissue (p<0.001) and reached the striatal tissue (p<0.001) seven days after PPN injury. Also at seven days post-injury PPN, increased concentrations of MDA (p<0.01) and a tendency to decrease in the concentrations of NO in both structures (SNpc and striatum) were found. The events associated with the generation of free radicals at nigral and striatal levels, can be part of the physiological mechanisms underlying motor dysfunction in rats with unilateral PPN neurotoxic lesion.
-
Necrostatin-1 (Nec-1) is an inhibitor of necroptosis, playing an important role in inhibition of pathological death in the central nervous system (CNS). Our earlier study suggests that Nec-1 protects the injured spinal cord. In this study, we found that Nec-1 reduces the elevated Ca(2+) concentration in mitochondria post-injury and preserves the remarkably decreased mitochondrial membrane potential (MMP) level post-spinal cord injury (SCI). ⋯ It also inhibits the up-regulation of mitochondrial fusion genes Mnf1, Mnf2 within 6h post-injury and adjusts the abnormal expression of mitochondrial fission gene Fis1. All these results indicate the improvement of mitochondrial functions in injured spinal cord after the treatment of Nec-1. This research revealed the mechanisms of functional protection of Nec-1 by mitigating mitochondrial dysfunction post-SCI.
-
The present study examines the change in water diffusion properties of the corpus callosum (CC) and the hippocampus, in response to prolonged hypobaric hypoxia (HH) stress, using in vivo magnetic resonance imaging (MRI) modalities such as T2 relaxometry and diffusion tensor imaging (DTI). Three groups of rats (n=7/group) were exposed to a simulated altitude of 6700m above sea level for the duration of 7, 14 and 21days, respectively. Data were acquired pre-exposure, post-exposure and after 1week of normoxic follow-up in each group. ⋯ Interestingly, 21-day HH-exposed rats did not show change in ADC values. The decrease in T2 values after 14 and 21days in the hippocampal region depicts iron deposition, which was confirmed by histopathology. This study successfully demonstrated the use of MRI modality to trace water diffusion changes in the brain due to prolonged HH exposure.
-
Prenatal stress (PNS) is a significant risk factor for the development of psychopathology in adulthood such as anxiety, depression, schizophrenia and addiction. Animal models of PNS resemble many of the effects of PNS on humans and provide a means to study the accumulated effects of PNS over several generations on brain function. Here, we examined how mild PNS delivered during the third week in utero over four consecutive generations affects behavioral flexibility and functional signaling among cortical and limbic structures. ⋯ The coherence of FPs between brain regions, however, was much higher in MGPNS animals among all structures and for most frequency bands. We propose that this pattern of changes in brain signaling reflects a simplification of network processing, which is consistent with reports of reduced spine density and dendritic complexity in the brains of animals receiving PNS. Our data support the proposal that recurrent ancestral stress leads to adaptations in the brain, and that these may confer adaptive behavior in some circumstances as compared to single-generation PNS.