Neuroscience
-
Interleukin-23/interleukin-23 receptor (IL-23/IL-23R) has been implicated in many inflammatory diseases. Previous research mainly focused on its ability to induce IL-17 production from T cells. However, few studies have investigated its role in cerebral ischemic injury. ⋯ However, there are no such biological properties for the IL-23p19 subunit alone. Our study provides the first evidence that IL-23 has a toxic effect on cells of the NVU under OGD stress, which is mediated by IL-23R. These results not only help us better understand the role of IL-23/IL-23R in brain ischemia, but also provide a potential therapeutic target in stroke.
-
At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. ⋯ Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain.
-
Monge's disease, also known as chronic mountain sickness (CMS), is a disease that potentially threatens more than 140 million highlanders during extended time living at high altitudes (over 2500m). The prevalence of CMS in Andeans is about 15-20%, suggesting that the majority of highlanders (non-CMS) are rather healthy at high altitudes; however, CMS subjects experience severe hypoxemia, erythrocytosis and many neurologic manifestations including migraine, headache, mental fatigue, confusion, and memory loss. The underlying mechanisms of CMS neuropathology are not well understood and no ideal treatment is available to prevent or cure CMS, except for phlebotomy. ⋯ We discovered that CMS neurons were much less excitable (higher rheobase) than non-CMS neurons. This decreased excitability was not caused by differences in passive neuronal properties, but instead by a significantly lowered Na(+) channel current density and by a shift of the voltage-conductance curve in the depolarization direction. Our findings provide, for the first time, evidence of a neuronal abnormality in CMS subjects as compared to non-CMS subjects, hoping that such studies can pave the way to a better understanding of the neuropathology in CMS.
-
Hemodialysis (HD) is considered the most common alternative for overcoming renal failure. Studies have shown the involvement of HD membrane in the genesis of oxidative stress (OS) which has a direct impact on the brain tissue and is expected to be involved in brain plasticity and also reorganization of brain function control. The goal of this paper was to demonstrate the sensitivity of the blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) to characterize the OS before and after the HD session. ⋯ OS is systematically increased in HD-patients after the HD-process. Indeed, the BOLD-fMRI shows a remarkable sensitivity to brain plasticity studied cortical areas. Our results confirm the superiority of the BOLD-fMRI quantities compared to the biological method used for assessing the OS while not being specific, and reflect the increase in OS generated by the HD. BOLD-fMRI is expected to be a suitable tool for evaluating the plasticity process evolution in hemodialysis brain patients.
-
A fundamental problem in neurophysiology is the understanding of neuronal mechanisms by which the central nervous system produces a sequence of voluntary or involuntary motor acts from a diverse repertory of movements. These kinds of transitions between motor acts are extremely complex; however, they could be analyzed in a more simple form in decerebrate animals in the context of spinal central pattern generation. ⋯ Because no changes in phase of these neurons from scratching to post-scratching locomotion were found, we suggest that in the lumbar spinal cord there are neurons associated with both motor tasks. Moreover, because of its high reproducibility we suggest that the study of post-scratching fictive locomotion, together with the unitary recording of neurons, could become a useful tool to study neuronal mechanisms underlying transitions from one rhythmic motor task to another, and to study in more detail the central pattern generator circuitry in the spinal cord.