Neuroscience
-
Cellular therapy has provided hope for restoring neurological function post stroke through promoting endogenous neurogenesis, angiogenesis and synaptogenesis. The current study was based on the observation that transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) promoted the neurological function improvement in stroked mice and meanwhile enhanced angiogenesis in the stroked hemisphere. Grafted hUCMSCs secreted human vascular endothelial growth factor A (VEGF-A). ⋯ Regarding how Notch1 signaling was linked with VEGF-A secretion, we provided some clue that Notch1 effector Hes1 mRNA expression was significantly up-regulated by OGD-neuron co-culturing and down-regulated after additional treatment of DAPT. In summary, our data provided evidence that the VEGF-A secretion from hUCMSCs after being triggered by OGD neurons is Notch1 signaling associated. This might be a possible mechanism that contributes to the angiogenic effect of hUCMSC transplantation in stroked brain.
-
Activity and disuse of synapses are thought to influence progression of several neurodegenerative diseases in which synaptic degeneration is an early sign. Here we tested whether stimulation or disuse renders neuromuscular synapses more or less vulnerable to degeneration, using axotomy as a robust trigger. We took advantage of the slow synaptic degeneration phenotype of axotomized neuromuscular junctions in flexor digitorum brevis (FDB) and deep lumbrical (DL) muscles of Wallerian degeneration-Slow (Wld(S)) mutant mice. ⋯ Finally, we gave mice access to running wheels for up to 4 weeks prior to axotomy. Surprisingly, exercising Wld(S) mice ad libitum for 4 weeks increased about twofold the amount of subsequent axotomy-induced synaptic degeneration. Together, the data suggest that vulnerability of mature neuromuscular synapses to axotomy, a potent neurodegenerative trigger, may be enhanced bimodally, either by disuse or by hyperactivity.
-
Astrocytes synthesize and release endozepines, a family of regulatory neuropeptides, including diazepam-binding inhibitor (DBI) and its processing fragments such as the octadecaneuropeptide (ODN). At the molecular level, ODN interacts with two types of receptors, i.e. it acts as an inverse agonist of the central-type benzodiazepine receptor (CBR), and as an agonist of a G protein-coupled receptor (GPCR). ODN exerts a wide range of biological effects mediated through these two receptors and, in particular, it regulates astrocyte activity through an autocrine/paracrine mechanism involving the metabotropic receptor. ⋯ Similar effect was achieved with bpODN but at a 10 times higher dose (1000 ng, icv). Similarly, and contrasting with our hypothesis, bpODN was also 10 times less potent than ODN to induce anxiety-related behavior in the elevated zero maze test. Thus, the present data do not support that phosphorylation of ODN is involved in receptor selectivity but indicate that it rather weakens ODN activity.
-
Estrogen receptor-related receptor-α (ERRα) is an orphan member of the nuclear receptor superfamily that interacts with peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to stimulate vascular endothelial growth factor (VEGF) expression and angiogenesis in a hypoxia-inducible factor-1α-independent pathway. Although it is not regulated by any natural ligand, the action of ERRα can be blocked by the synthetic molecule XCT790. In the present study, Sprague-Dawley rats were randomly allocated to a sham group, injury-saline group or injury-XCT90 group. ⋯ Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) analyses also indicated that XCT790 dramatically repressed the expression of ERRα, thus reducing the expression of VEGF and angiopoietin-2 (Ang-2) throughout the duration of the experiment, but the expression of PGC-1α was not affected. Immunofluorescence analyses indicated that vascular density and endothelial cell proliferation were decreased in the injury-XCT90 group compared with the injury-saline group. These results suggest that ERRα is involved in mediating angiogenesis after SCI in the rat traumatic SCI model.
-
This study aimed to clarify whether ischemia-induced early growth response 1 (EGR1) influenced the outcomes of experimental stroke by regulating brain-derived neurotrophic factor (BDNF) expression. ⋯ Ischemia-induced EGR1 expression may exaggerate brain injury by reducing BDNF expression. Inhibiting EGR1 may become a potential treatment for improving outcomes of ischemic stroke.