Neuroscience
-
Proteomic profiles of the thalamus and the correlation between the rats' performance on a spatial learning task and differential protein expression were assessed in the thiamine deficiency (TD) rat model of Wernicke-Korsakoff syndrome. Two-dimensional gel-electrophoresis detected 320 spots and a significant increase or decrease in seven proteins. Four proteins were correlated to rat behavioral performance in the Morris Water Maze. ⋯ The association of VDAC is evident in trials in which the rats' performance was worst, in which the VDAC protein was reduced, as confirmed by Western blot. No difference was observed on the mRNA of Vdac genes, indicating that the decreased VDAC expression may be related to a post-transcriptional process. The results show that TD neurodegeneration involves changes in thalamic proteins and suggest that VDAC protein activity might play an important role in an initial stage of the spatial learning process.
-
Alzheimer's disease (AD), the most common cause of dementia in aging people, is found to have a critical link with the deposition of β-amyloid (Aβ) in the brain. The inhibition of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), a key enzyme for Aβ production, is a promising target for AD therapy. In pursuit to find a potent inhibitor of BACE1, we identified galangin, a natural flavonoid, had a significant lowering effect on Aβ levels. ⋯ We further investigated whether epigenetic mechanisms, such as histone acetylation and DNA methylation, were involved in galangin-induced transcriptional regulation of BACE1. Our data show that galangin induces a decrease of acetylated H3 in the BACE1 promoter regions through the up-regulation of endogenous HDAC1-mediated deacetylation, which is independent of DNA methylation status. The above findings suggest a novel mechanism for polyphenols' neuroprotective effect in neurodegeneration and galangin as a potential drug candidate for AD therapy.
-
The amygdalar basolateral nuclear complex (BLC) is a cortex-like structure that receives inputs from many cortical areas. It has long been assumed that cortico-amygdalar projections, as well as inter-areal intracortical connections, arise from cortical pyramidal cells. However, recent studies have shown that GABAergic long-range nonpyramidal neurons (LRNP neurons) in the cortex also contribute to inter-areal connections. ⋯ About half of the SOM+ neurons in the lateral entorhinal area labeled by FG were GABA+. FG+ neurons containing parvalbumin were only seen in the basal forebrain, and no FG+ neurons containing vasoactive intestinal peptide were observed in any brain region. Since LRNP neurons involved in corticocortical connections are critical for synchronous oscillations that allow temporal coordination between distant cortical regions, the LRNP neurons identified in this study may play a role in the synchronous oscillations of the BLC and hippocampal region that are involved in the retrieval of fear memories.
-
When comparing motor performance of the dominant and nondominant hands, older adults tend to be less asymmetric compared to young adults. This has suggested decreased motor lateralization and functional compensation within the aging brain. ⋯ Using two naturalistic tasks that selectively biased the dominant or nondominant hands, we compared asymmetries in performance (measured as a ratio) across chronological age. Results showed preserved motor asymmetry across ages in both tasks, with no difference in asymmetry ratios in the 'old old' compared to the 'young old.' In the context of previous work, our findings suggest that the aging brain may also be characterized by additional measures besides chronological age.
-
Recent data have shown that preservation of the neuromuscular junction (NMJ) after traumatic nerve injury helps to improve functional recovery with surgical repair via matrix metalloproteinase-3 (MMP3) blockade. As such, we sought to explore additional pathways that may augment this response. Wnt3a has been shown to inhibit acetylcholine receptor (AChR) clustering via β-catenin-dependent signaling in the development of the NMJ. ⋯ Correspondingly, immunohistochemical analysis of denervated transgenic mouse line TCF/Lef:H2B-GFP muscles demonstrated that the number of GFP-positive cells was increased at the motor endplate band. These collective data support that post-synaptic AChRs destabilize after denervation by a process that involves the Wnt/β-catenin pathway. As such, this pathway serves as a potential therapeutic target to prevent the motor endplate degeneration that occurs following traumatic nerve injury.