Neuroscience
-
A common scientific strategy toward understanding consciousness is to study neural correlates of consciousness (NCC) for a particular conscious percept. This can be done by contrasting conditions in which subjects are aware and unaware of a particular visual stimulus. However, recent findings have been contradictory and this approach appears not to reveal only the NCC, but also the prerequisites or consequences of consciousness. ⋯ Results indicate that trials where subjects reported to have seen the stimulus are associated with a more pronounced P300. Hence, the present data support the theories which claim that P300 is a marker of conscious perception. However, an earlier component, visual awareness negativity also tracks conscious perception reliably so that the P300 need not be the earliest correlate of conscious perception.
-
Individuals' reading skills are critical for their educational development, but variation in reading skills is known to be large. The present study used functional magnetic resonance imaging (fMRI) to examine the role of spontaneous brain activity at rest in individual differences in reading skills in a large sample of participants (N=263). Specifically, we correlated individuals' word-reading skill with their fractional amplitude of low-frequency fluctuation (fALFF) of the whole brain at rest and found that the fALFFs of both the bilateral precentral gyrus (PCG) and superior temporal plane (STP) were positively associated with reading skills. ⋯ A cross-validation confirmed that the individual differences in word-reading skills were reliably correlated with the fALFF values of the bilateral PCG and STP. A follow-up task-based fMRI experiment revealed that the reading-related regions overlapped with regions showing a higher response to sentences than to pseudo-sentences (strings of pseudo-words), suggesting the resting-state brain activity partly captures the characteristics of task-based brain activity. In short, our study provides one of the first pieces of evidence that links spontaneous brain activity to reading behavior and offers an easy-to-access neural marker for evaluating reading skill.
-
The frontostriatal system plays a critical role in emotional and cognitive control. Brain-derived neurotrophic factor (BDNF) influences the release of dopamine (DA) in the ventral striatum (VST), while catechol-O-methyltransferase (COMT) impacts DA availability in the prefrontal cortex (PFC). ⋯ Specifically, BDNF Val66Met impacted the VST-PFC functional connectivity in an inverted U-shaped in COMT Met carriers, while COMT Val homozygotes displayed a U-shaped. These data may be helpful elucidating the mechanism of the interaction between BDNF and COMT on the cognitive functions that are based in the frontostriatal system.
-
We have previously demonstrated that multiple sclerosis (MS) patients have abnormal cerebrospinal fluid (CSF) levels of the key myelin-related molecules cobalamin (Cbl), epidermal growth factor (EGF), and normal cellular prions (PrP(C)s), thus confirming that some CSF abnormalities may be co-responsible for remyelination failure. We determined the levels of these three molecules in post-mortem spinal cord (SC) samples taken from MS patients and control patients. The control SC samples, almost all of which came from non-neurological patients, did not show any microscopic lesions of any type. ⋯ Given that we have previously demonstrated that Cbl positively regulates central nervous system EGF levels, it is conceivable that the low EGF levels in the MS SC may be causally related to a local decrease in Cbl levels. Only PrP(C) levels were invariably decreased in both the SC and CSF regardless of the clinical course of the disease. These findings suggest that the simultaneous lack of Cbl, EGF, and PrP(C)s may greatly hamper the remyelination process in MS patients, because they are key molecules of the machinery for remyelination.
-
This study used the framework of the referent configuration hypothesis and slow changes in the external conditions during vertical oscillation of a hand-held object to infer the characteristics of hypothetical control variables. The study had two main objectives: (1) to show that hypothetical control variables, namely, referent coordinates and apparent stiffness of vertical hand position and grip force can be measured in an experiment; and (2) to establish relation(s) between these control variables that yield the classic grip-force-load-force coupling. Healthy subjects gripped a handle and performed vertical oscillations between visual targets at one of five metronome-prescribed frequencies. ⋯ To validate the method, these values were used to predict the vertical force and the grip force applied to the handle for movement cycles that were not utilized in the reconstruction process. Analysis of the coupling between the four variables, two referent coordinates and two apparent stiffness values, revealed a single strong constraint reflecting the coupling between the grip force and vertical force. We view these data as providing experimental support for the idea of controlling natural, multi-muscle actions with shifts in a low-dimensional set of referent coordinates.