Neuroscience
-
We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. ⋯ Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway.
-
Estradiol-induced plasticity involves changes in dendritic spine density and in the relative proportions of the different dendritic spine types that influence neurons and neural circuits. Such events affect brain structures that control the timing of neuroendocrine and behavioral processes, influencing both reproductive and cognitive functions during the estrous cycle. Accordingly, to investigate the dendritic spine-related plastic changes that may affect the neural processes involved in mating, estradiol-mediated dendritic spine plasticity was studied in type II cells situated in the ventrolateral portion of the ventromedial hypothalamic nucleus (VMN) of female, adult rats. ⋯ The different types of dendritic spines in non-projection neurons of the VMN could serve to maintain greater synaptic excitatory activity when receptivity and estradiol levels are maximal. However, they may also fulfill an additional functional role when receptivity and estradiol decline. To date specific roles of the different types of spines in neural hypothalamic activity during the estrous cycle remain unknown and they clearly deserve further study.
-
Previous results have shown that the substance P (SP) N-terminal fragment SP1-7 may attenuate hyperalgesia and produce anti-allodynia in animals using various experimental models for neuropathic pain. The heptapeptide was found to induce its effects through binding to and activating specific sites apart from any known neurokinin or opioid receptor. Furthermore, we have applied a medicinal chemistry program to develop lead compounds mimicking the effect of SP1-7. ⋯ The extensive target screen, including 111 targets, did not reveal any hit for the binding site among a number of known receptors or enzymes involved in pain modulation. Our animal studies confirmed that SP1-7, but also synthetic analogs thereof, possesses anti-allodynic effects in the mouse SNI model of neuropathic pain. One of the lead compounds, a constrained H-Phe-Phe-NH2 analog, was shown to exhibit a significant anti-allodynic effect.
-
In Alzheimer's disease (AD), numerous β-amyloid (Aβ) plaques are associated with butyrylcholinesterase (BChE) activity, the significance of which is unclear. A mouse model, containing five human familial AD genes (5XFAD), also develops Aβ plaques with BChE activity. Knock-out of BChE in this model showed diminished fibrillar Aβ plaque deposition, more so in males than females. This suggests that lack of BChE reduces deposition of fibrillar Aβ in AD and this effect may be influenced by sex.
-
Major depressive disorder (MDD) is a prevalent psychiatric mood illness and a major cause of disability and suicide worldwide. However, the underlying pathophysiology of MDD remains poorly understood due to its heterogenic nature. Extensive pre-clinical research suggests that many molecular alterations associated with MDD preferentially localize to the postsynaptic density (PSD). ⋯ Within the PSD, the N-methyl-D-aspartate (NMDA) receptor subunit NR2A and its downstream targets contribute to CMS susceptibility. Further analysis of disease relevance indicated that the PSD contains a complex set of proteins of known relevance to mental illnesses including depression. In sum, these findings provide novel insights into the contribution of PSD-associated proteins to stress susceptibility and further advance our understanding of the role of hippocampal synaptic plasticity in MDD.