Neuroscience
-
Schizophrenia patients treated with olanzapine, or other second-generation antipsychotics, frequently develop metabolic side-effects, such as glucose intolerance and increased adiposity. We previously observed that modeling these adverse effects in rodents also resulted in hippocampal shrinkage. Here, we investigated the impact of olanzapine treatment, and the beneficial influence of routine exercise, on the neurosecretion machinery of the hippocampus. ⋯ Syntaxin-1 depletion appeared more prominent in VGAT-positive terminals within the dentate gyrus, and in non-VGAT/VGLUT1-overlapping areas of CA3. The present findings suggest that chronic exposure to olanzapine may alter hippocampal connectivity, especially in inhibitory terminals within the dentate gyrus, and along the mossy fibers of CA3. Together with previous studies, we propose that exercise-based therapies might be beneficial for patients being treated with olanzapine.
-
Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. ⋯ PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure.
-
Y-box-binding protein (YB-1) is a member of the cold-shock protein family and participates in a wide variety of DNA/RNA-dependent cellular processes including DNA repair, transcription, mRNA splicing, packaging, and translation. At the cellular level, YB-1 is involved in cell proliferation and differentiation, stress responses, and malignant cell transformation. A general role for YB-1 during inflammation has also been well described; however, there are minimal data concerning YB-1 expression in microglia, which are the immune cells of the brain. ⋯ YB-1 upregulation was not accompanied by its translocation from the cytoplasm to the nucleus. YB-1 induction appeared to be related to microglial proliferation because it was partially co-regulated with Ki67. In addition, YB-1 protein levels correlated with microglia phagocytic activity because its upregulation could also be induced by inert NPs.
-
Hippocampus displays functional heterogeneity along its long axis which has been interpreted in terms of segregation of inputs. Recent evidence has shown that there are also important differences in the organization of the local neuronal circuitry between the dorsal (DH) and the ventral hippocampus (VH). Synaptic plasticity is a crucial factor for the function of the hippocampal circuit. ⋯ Blockade of GABAA receptors (GABAARs) increased the maximum area of EPSP more in VH than in DH and reversed facilitation into GABABR-dependent depression that was more robust in DH than in VH. I conclude that interactions between the synaptic actions of GABABR, GABAAR, and NMDAR contribute to diversifying short-term synaptic plasticity along the dorsoventral axis of the hippocampus. It is hypothesized that this diversification has important implications for the information processing performed by the local circuitries of the two hippocampal segments.
-
Iron overload contributes to the development of neurodegeneration and the exacerbation of normal apoptosis rates, largely due to its participation in the Fenton reaction and production of reactive oxygen species (ROS). Mitochondria constitute the major intracellular source of ROS and the main target of attack by free radicals. They are dynamic organelles that bind (fusion) and divide (fission) in response to environmental stimuli, developmental status, and energy needs of the cells. ⋯ DNM1L, OPA1, and synaptophysin levels in the hippocampus were quantified by Western blotting. Results showed that SFN was able to reverse iron-induced decreases in mitochondrial fission protein, DNM1L, as well as synaptophysin levels in the hippocampus, leading to a recovery of recognition memory impairment induced by iron. These findings suggest that SFN may be further investigated as potential agent for the treatment of cognitive deficits associated with neurodegenerative disorders.