Neuroscience
-
Human leg muscles are often activated inhomogeneously, e.g. in standing. This may also occur in complex tasks like walking. Thus, bipolar surface electromyography (sEMG) may not accurately represent whole muscle activity. ⋯ Normalizing to M-wave produced the greatest spatial variability (45% greater than unnormalized EMG) and increased inter-participant variability by 70%. Unnormalized bipolar LG sEMG may provide misleading results about representative muscle activity in walking due to spatial variability. For the peak value and MVC approaches, different electrode locations likely have minor effects on normalized results, whereas electrode location should be carefully considered when normalizing walking sEMG data to maximal M-waves.
-
The inferior colliculus (IC) receives many corticofugal projections, which can mediate plastic changes such as shifts in frequency tuning or excitability of IC neurons. While the densest projections are found in the IC's external cortices, fibers originating from the primary auditory cortex (AI) have been observed throughout the IC's central nucleus (ICC), and these projections have shown to be organized tonotopically. Some studies have also found projections from other core and non-core cortical regions, though the organization and function of these projections are less known. ⋯ Compared to the corticocollicular projections to the ICC from AI, there were fewer projections to the ICC from VRB, and these projections had a weaker tonotopic organization. The majority of VRB projections were observed in the caudal-medial versus the rostral-lateral region along an isofrequency lamina of the ICC, which is in contrast to the AI projections that were scattered throughout an ICC lamina. These findings suggest that the VRB directly modulates sound information within the ascending lemniscal pathway with a different or complementary role compared to the modulatory effects of AI, which may have implications for treating hearing disorders.
-
This functional magnetic resonance imaging (fMRI) study investigated the brain regions underlying language task performance in adult second language (L2) learners. Specifically, we identified brain regions where the level of activation was associated with L2 fluency levels. Thirty Japanese-speaking adults participated in the study. ⋯ This suggests that the learners with higher L2 fluency were actively engaged in post-syntactic integration processing supported by the left pSTG. These data imply that L2 fluency predicts neural resource allocation during language comprehension tasks as well as in production tasks. This study sheds light on the neural underpinnings of L2 learning by identifying the brain regions recruited during different language tasks across different modalities (production vs. comprehension).
-
Tumor necrosis factor alpha (TNFα) is increased in patients with headache, neuropathic pain, periodontal and temporomandibular disease. This study and others have utilized TNF receptor 1/2 (TNFR1/2) knockout (KO) animals to investigate the effect of TNFα dysregulation in generation and maintenance of chronic neuropathic pain. The present study determined the impact of TNFα dysregulation in a trigeminal inflammatory compression (TIC) nerve injury model comparing wild-type (WT) and TNFR1/2 KO mice. ⋯ The results suggest the dysregulated serum cytokine proteome profile and bilateral spinal trigeminal nucleus microglial activation are contributory to the bilateral mechanical hypersensitization in this chronic trigeminal neuropathic pain model in the mice with TNFα dysregulation. Data support involvement of both neurogenic and humoral influences in chronic neuropathic pain.
-
We have recently reported on the efficacy of an N-methyl-d-aspartate (NMDA) receptor partial antagonist, S-Methyl-N,N-diethylthiolcarbamate sulfoxide (DETC-MeSO), in improving outcome following stroke, including reduced infarct size and calcium influx, suppressing the endoplasmic reticulum (ER) stress-induced apoptosis as well as improving behavioral outcome. DETC-MeSO was shown to suppress the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway, one of the major ER stress pathways. Several studies including ours have provided evidence that taurine also has neuroprotective effects through reducing apoptosis and inhibiting activating transcription factor 6 (ATF6) and inositol requiring enzyme 1 (IRE-1) pathways. ⋯ NeuN expression levels indicated that more neurons were protected in the presence of DETC-MeSO and taurine. We also showed that combined treatment can prevent gliosis and increase p-AKT a pro-survival marker in the penumbra. Therefore, we conclude that combined treatment with both DETC-MeSO and taurine synergistically inhibits all three ER stress pathways and apoptosis and therefore can be a novel and effective treatment after ischemic stroke.