Neuroscience
-
Western diets are high in fat and sucrose and can influence behavior and gut microbiota. There is growing evidence that altering the microbiome can influence the brain and behavior. This study was designed to determine whether diet-induced changes in the gut microbiota could contribute to alterations in anxiety, memory or cognitive flexibility. ⋯ There was no significant effect of diet on step-down, exploration or novel recognitions. Higher percentages of Clostridiales and lower expression of Bacteroidales in high-energy diets were related to the poorer cognitive flexibility in the reversal trials. These results suggest that changes in the microbiome may contribute to cognitive changes associated with eating a Western diet.
-
Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel.
2-Aminoethoxydiphenyl borate (2-APB) has been recently identified as a common agonist of TWIK-related K(+) channel (TREK)/TRAAK channels, a subfamily of two-pore domain K(+) (K2P) channels. TREK-2 displays much higher sensitivity to 2-APB compared with TREK-1, despite that these two channels share the highest homology among K2P members. However, the structural basis for their difference in response to 2-APB still remains unknown. ⋯ Finally, we demonstrated that key residues or domains required for 2-APB activation are not involved in the gating mechanism of the selectivity filter. In summary, we reveal a unique modulatory model of TREK-2-Ct that distinguishes it from TREK-1 in high sensitivity to 2-APB. The cooperation of the non-conserved residues within the proximal Ct of TREK-2 plays a dominant role in the 2-APB-induced channel opening, whereas the distal Ct negatively regulates the process.
-
Impulsive actions and decisions often lead to undesirable outcomes. Lesion and neuroimaging studies have revealed that the orbital frontal cortex (OFC) and dorsal striatum (dSTR) play key roles in inhibitory control. It has been proposed that greater OFC input into the dSTR reflects enhanced top-down cognitive control and less impulsive responding. ⋯ BDA was visualized using histochemistry followed by light microscopy imaging and densitometry analysis. Density of BDA in the dSTR was significantly greater in females as compared to males indicating that the projections from the OFC to dSTR may be greater in females as compared to males. Our results suggest a potential neuroanatomical sex difference that may contribute to the reported differences in inhibitory control levels of male and female rats.
-
Central GABA(A) receptors mediate GABAergic phasic and tonic inhibition. While synaptic αβγ GABA(A) receptors primarily mediate phasic inhibition, extrasynaptic αβδ receptors play an important role in mediating tonic inhibition. Etomidate is a general anesthetic that produces its effects by enhancing GABA(A) receptor activity. ⋯ Moreover, desensitization was significantly decreased by etomidate. During prolonged GABA applications, etomidate enhanced steady-state currents more than peak currents. Thus, etomidate enhances tonic GABAergic inhibition through extrasynaptic αβδ receptors by both augmenting gating and reducing desensitization.
-
Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. ⋯ Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory deficits in the offspring of dams with MTHFR deficiency or dietary deficiencies of critical methyl donors. We suggest that deficiencies in maternal one-carbon metabolism during pregnancy can contribute to hippocampal dysfunction in offspring through apoptosis or altered choline metabolism.