Neuroscience
-
Impulsivity, which can be subdivided into impulsive action and impulsive choice, is implicated as a factor underlying drug abuse vulnerability. Although previous research has shown that dopamine (DA) systems in prefrontal cortex are involved in impulsivity and substance abuse, it is not known if inherent variation in DA transporter (DAT) function contributes to impulsivity. The current study determined if individual differences in either impulsive action or impulsive choice are related to DAT function in orbitofrontal (OFC) and/or medial prefrontal cortex (mPFC). ⋯ Vmax in OFC, but not mPFC, was correlated with performance in the cued go/no-go task, with decreased OFC DAT function being associated with high impulsive action. In contrast, Vmax in OFC and mPFC was not correlated with performance in the delay-discounting task. The current results demonstrate that impulsive behavior in cued go/no-go performance is associated with decreased DAT function in OFC, suggesting that hyperdopaminergic tone in this prefrontal subregion mediates, at least in part, increased impulsive action.
-
While activation of cannabinoid CB1 receptor (CB1R) regulates a variety of retinal neuronal functions by modulating ion channels in these cells, effect of activated cannabinoid receptors on Ca(2+) channels in retinal Müller cells is still largely unknown. In the present work we show that three subunits of T-type Ca(2+) channels, CaV3.1, CaV3.2 and CaV3.3, as well as one subunit of L-type Ca(2+) channels, CaV1.2, were expressed in rat Müller cells by immunofluorescent staining. Consistently, nimodipine- and mibefradil-sensitive Na(+) currents through L- and T-type Ca(2+) channels could be recorded electrophysiologically. ⋯ However, the effect of AEA could be partially rescued by AM630. These results suggest that WIN55212-2 and 2-AG receptor-independently suppressed the Ca(2+) channel currents in Müller cells, while AEA suppressed the currents partially through CB2Rs. The existence of receptor-dependent and -independent mechanisms suggests that cannabinoids may modulate Müller cell functions through multiple pathways.
-
Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. ⋯ Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults.
-
Expression of the immediate-early gene fos (also known as c-fos) and phosphorylation of the product of the early response gene atf2 (pATF2) in the adult auditory brainstem can be modulated by electrical intracochlear stimulation. The Fos and pATF2 proteins are competitive monomers of the heterodimeric activator protein-1 (AP-1) transcription factor that triggers the expression of genes related to neural plasticity. Our previous findings showed that the stimulation-induced spatio-temporal pattern of Fos expression in the adult auditory system depends on hearing experience. ⋯ Independent of hearing experience, Fos expression correlated with a locally matching decrease of pATF2 expression in AVCN and LSO, but not in CIC. We suggest that these changes in gene expression result in a shift of AP-1 dimer composition from ATF2:Jun to Fos:Jun. This change in AP-1 constellation is expected to invoke different transcriptional cascades leading to distinct modes of tissue reorganization and plasticity responses in the mature central auditory system under stimulation.
-
The aim was to investigate urodynamic parameters and functional excitability of the periaqueductal gray matter (PAG) during changes in sleep-like brain states in urethane anesthetized rats. Simultaneous recordings of detrusor pressure, external urethral sphincter (EUS) electromyogram (EMG), cortical electroencephalogram (EEG), and single-unit activity in the PAG were made during repeated voiding induced by continuous infusion of saline into the bladder. The EEG cycled between synchronized, high-amplitude slow wave activity (SWA) and desynchronized low-amplitude fast activity similar to slow wave and 'activated' sleep-like brain states. ⋯ The spontaneous firing rate of 83% of the micturition-responsive cells was sensitive to changes in EEG state. In nine of the 12 responsive cells (75%) the responses were reduced during SWA. We propose that during different sleep-like brain states changes in urodynamic properties occur which may be linked to changing excitability of the micturition circuitry in the periaqueductal gray.