Neuroscience
-
The weaver mouse, is a phenocopy of Parkinson's disease (PD) in which dopaminergic neurons degenerate gradually during development, reaching at P21 a neurodegeneration of 55%. Thus, the weaver mouse constitutes an appropriate in vivo PD model for investigating the effect of neuroprotective agents. In the present study, long-term treatment (from P1 to P21) with 17β-estradiol (17β-estradiol) significantly protected the dopaminergic neurons in the substantia nigra (SN) of weaver mouse by 54%, as was detected by immunohistochemical experiments, using the specific antibody against tyrosine hydroxylase (TH). ⋯ Our results show the in vivo neuroprotective effect of 17β-estradiol, which is strongly enhanced by co administration of NAC, indicating a strong synergistic effect of the two drugs. Furthermore, the main mechanism underlying this neuroprotective action seems to be the reversal of the oxidative stress shown by the high peroxidation levels. These results could be of clinical relevance since both drugs are already used separately in the clinic, 17β-estradiol for treatment of PD and NAC as a mucolytic agent and for the treatment of several disorders.
-
Glycinergic neurons provide an important mechanism to control excitation of motoneurons in the brainstem and a reduction or loss of glycinergic inhibition can be deleterious by leading to hyperexcitation such as in hyperekplexia or neurodegeneration and neuronal death as in amyotrophic lateral sclerosis (ALS). Second messenger systems that change cyclic AMP and lead to phosphorylation of the α3 subunit of the glycine receptor (GlyR α3) have been shown to be potent modulators of synaptic inhibition in the spinal cord and brain stem. ⋯ Interestingly, we found that the modulation of synaptic transmission by cAMP-mediated pathways appeared to be reduced in Glra3 knockout mice. In the second postnatal week the forskolin-induced increase of miniature inhibitory postsynaptic potential (mIPSC) frequency was significantly larger in control as compared to Glra3 knockout mice suggesting that presynaptic glycine release in the hypoglossal nucleus is partially depending on GlyR α3.
-
The choroid plexus (CP) located in brain ventricles, by forming the interface between the blood and the cerebrospinal fluid (CSF) is in a privileged position to monitor the composition of these body fluids. Yet, the mechanisms involved in this surveillance system remain to be identified. The taste transduction pathway senses some types of molecules, thereby evaluating the chemical content of fluids, not only in the oral cavity but also in other tissues throughout the body, such as some cell types of the airways, the gastrointestinal tract, testis and skin. ⋯ This effect was diminished in the presence of the bitter receptor blocker Probenecid. In summary, we described the expression of the taste-related components involved in the transduction signaling cascade in CP. Taken together, our results suggest that the taste transduction pathway in CPEC makes use of T2R receptors in the chemical surveillance of the CSF composition, in particular to sense bitter noxious compounds.
-
Mesenchymal stem cells (MSCs) obtained from bone marrow (BM) have been shown to promote neuronal growth and survival. However, the comparative effects of MSCs of different sources, including menstrual MSCs (MenSCs), BM, umbilical cord and chorion stem cells on neurite outgrowth have not yet been explored. Moreover, the modulatory effects of MSCs may be mediated by paracrine mechanisms, i.e. by molecules contained in the MSC secretome that includes soluble factors and extracellular vesicles such as microvesicles and/or exosomes. ⋯ The extracellular vesicle fractions showed a distinctive effect: while the exosome-enriched fraction enhanced neurite outgrowth, the microvesicle-enriched fraction displayed an inhibitory effect. When we compared exosome fractions of different human MSC sources, MenSC exosomes showed superior effects on the growth of the longest neurite in cortical neurons and had a comparable effect to BM-SC exosomes on neurite outgrowth in dorsal root ganglia neurons. Thus, the growth-stimulating effects of exosomes derived from MenSCs as well as the opposing effects of both extracellular vesicle fractions provide important information regarding the potential use of MenSCs as therapeutic conveyors in neurodegenerative pathologies.
-
Women are more likely than men to suffer from anxiety disorders and major depression. These disorders share hyperresponsiveness to stress as an etiological factor. Thus, sex differences in brain arousal systems and their regulation by chronic stress may account for the increased vulnerability to these disorders in women. ⋯ The ovarian steroids could "buffer" the effect of this adverse experience in females on these parameters. Finally, the dexamethasone (DEX) suppression test indicated that the chronic stress associated with social isolation impairs feedback inhibition in both sexes in which an increase in the abundance of glucocorticoid receptors (GRs) in the hippocampus was found. Altogether, these results demonstrate that social isolation affects neuroendocrine reactivity to stress, plasticity and emotionality in a sexually dimorphic manner.