Neuroscience
-
Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. ⋯ Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD.
-
Obsessive Compulsive Disorder (OCD) is a severe, chronic, and highly prevalent psychiatric disorder that affects between 1.5% and 3% of people worldwide. Despite its severity, high prevalence, and clear societal cost, current OCD therapies are only partially effective. ⋯ The recent development of strategies for genetic and circuit-specific manipulation in rodent models finally allows us to identify the molecular, cellular, and circuit events that lead to abnormal repetitive behaviors and affect dysregulation relevant to OCD. This review will highlight recent studies in mouse model systems that have used transgenic and optogenetic tools in combination with classic pharmacology and behavioral techniques to advance our understanding of these pathologic processes.
-
Despite decades of research, the neural circuit abnormalities underlying schizophrenia remain elusive. Although studies on schizophrenia patients have yielded important insights they have not been able to fully reveal the details of how neural circuits are disrupted in the disease, which is essential for understanding its pathophysiology and developing new treatment strategies. Animal models of schizophrenia are likely to play an important role in this effort. ⋯ Although these studies have revealed diverse manifestations of neural circuit dysfunction spanning multiple levels of analysis, common themes have nevertheless emerged across different studies and animal models, revealing a core set of neural circuit abnormalities. These include an imbalance between excitation and inhibition, deficits in synaptic plasticity, disruptions in local and long-range synchrony and abnormalities in dopaminergic signaling. The relevance of these findings to the pathophysiology of the disease is discussed, as well as outstanding questions for future research.