Neuroscience
-
Comparative Study
Differencial Activation of the Dopaminergic Systems in Rat Brain Basal Ganglia by Morphine and Methamphetamine.
Typical abused drug-induced behavioral changes are ordinarily mediated by the mesolimbic dopaminergic system and even the phenotypes of behavior are different from each other. However, the mechanisms that underlie the behavioral changes induced by these abused drugs have not yet been elucidated. ⋯ In contrast, the administration of morphine (10mg/kg) produced a significant increase in the release of dopamine from the nucleus accumbens, but not the striatum, which is accompanied by a decrease in the release of GABA in the ventral tegmental area. These findings indicate that morphine and methamphetamine differentially regulate dopaminergic systems to produce behavioral changes, even though both drugs have abuse potential through activation of the mesolimbic dopaminergic system.
-
Protein 14-3-3 is a reliable marker of rapid neuronal damage, specifically increased in cerebrospinal fluid (CSF) of sporadic Creutzfeldt-Jakob disease (sCJD) patients. Its detection is usually performed by Western Blot (WB), prone to methodological issues. Our aim was to evaluate the diagnostic performance of a recently developed quantitative enzyme-linked immunosorbent (ELISA) assay for 14-3-3γ, in comparison with WB and other neurodegeneration markers. ⋯ ApoE and PRNP genotypes did not influence ELISA 14-3-3γ levels. Despite specificity for 14-3-3γ isoform, ELISA results not only match WB evaluation but also help discrimination of inconclusive results. Our results therefore reinforce this assay as a single screening test, allowing higher sample throughput and unequivocal results.
-
Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. ⋯ In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined.
-
Developmental ethanol (EtOH) exposure can lead to long-lasting cognitive impairment, hyperactivity, and emotional dysregulation among other problems. In healthy adults, sleep plays an important role in each of these behavioral manifestations. Here we explored circadian rhythms (activity, temperature) and slow-wave sleep (SWS) in adult mice that had received a single day of EtOH exposure on postnatal day 7 and saline littermate controls. ⋯ Furthermore, EtOH-treated animals did not display a post-training modification in SWS which occurred in controls. In contrast to the memory impairment, sleep fragmentation was not correlated with the developmental EtOH-induced hyperactivity. Together these results suggest that disruption of SWS and its plasticity are a secondary contributor to a subset of developmental EtOH exposure's long-lasting consequences.
-
Studies on perceptual decision-making showed that manipulating the proportion of target and non-target stimuli affects the behavioral performance. Tasks with high frequency of targets are associated to faster response times (RTs) conjunctively to higher number of errors (reflecting a response bias characterized by speed/accuracy trade-off) when compared to conditions with low frequency of targets. Electroencephalographic studies well described modulations of post-stimulus event-related potentials as effect of the stimulus probability; in contrast, in the present study we focused on the pre-stimulus preparatory activities subtending the response bias. ⋯ Contemporarily with the BP, a right lateralized prefrontal negativity (lateral pN, previously associated with activity within the dorsolateral prefrontal cortex) was larger in the task with rare go trial. In the post-stimulus processing stage, we confirmed that the N2 and the P3 components were larger for rare trials, irrespective of the Go/No-go stimulus category. The increase of activities recorded in the preparatory phase related to frequency of targets is consistent with the view proposed in accumulation models of perceptual decision for which target frequency affects the subjective baseline, reducing the distance between the starting-point and the response boundary, which determines the response speed.