Neuroscience
-
The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. ⋯ Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH.
-
Cognitive impairment, anxiety- and depressive-like symptoms are well recognized outcome of cerebral ischemia in clinical and preclinical settings. Rolipram, a phosphodiesterase-4 (PDE-4) inhibitor, improves cognition and produces anxiolytic- and antidepressant-like effects in rodents. Rolipram also exerts anti-inflammatory effects and enhances survival of newborn hippocampal neurons in mice subjected to transient global cerebral ischemia. ⋯ Chronic treatment with rolipram attenuated the behavioral effects of BCCAO. Rolipram also decreased neurodegeneration in the CA3 while it increased dendritic arborization of DCX-immunoreactive (DCX-IR) neurons and microtubule associate MAP-2 expression in the hippocampus of BCCAO mice. These data suggest that chronic inhibition of PDE-4 can be a useful therapeutic strategy to improve the emotional and cognitive outcomes of transient global cerebral ischemia.
-
A plethora of studies have indicated that enriched environment (EE) paradigm provokes plastic and morphological changes in astrocytes with accompanying increments of their density and positively affects the behavior of rodents. We also previously documented that EE could be employed to preclude several behavioral abnormalities, mainly cognitive deficits, attributed to postnatal N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801) treatment, as a rodent model of schizophrenia (SCH) aspects. Given this, the current study quantitatively investigated the number of cells, presumed to be astrocytes, expressing two astroglia-associated proteins (S100B and glial fibrillary acidic protein (GFAP)) by immunohistochemistry in the prefrontal cortex (PFC), along with anxiety and passive avoidance (PA) learning behaviors by utilizing elevated plus maze (EPM) and shuttle-box tests, in MK-801-treated male wistar rats submitted to EE and non-EE rats. ⋯ The trend of diminished GFAP-immunopositive cells and elevated S100B-immunostained cells in the PFC was reversed in the SCH-like rats by exposure of animals to EE, commencing from birth up to the time of experiments on P28-85. Additionally, EE exhibited an ameliorating effect on the behavioral abnormalities evoked by MK-801. Overall, present findings support that improper astrocyte functioning and behavioral changes, reminiscent of the many facets of SCH, occur consequential to repetitive administration of MK-801 and that raising rat pups in an EE mitigates these alterations.
-
This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. ⋯ Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction.
-
It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. ⋯ Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y13. This study provides new insights into the types of purinergic receptors that contribute to the fine-tuning of cholinergic transmission at mammalian neuromuscular junction.