Neuroscience
-
Brain tauopathies are characterized by abnormal processing of tau protein. While somatodendritic tau mislocalization has attracted considerable attention in tauopathies, the role of tau pathology in axonal transport, connectivity and related dysfunctions remains obscure. We have previously shown using the squid giant synapse that presynaptic microinjection of recombinant human tau protein (htau42) results in failure of synaptic transmission. ⋯ This event was mediated by calcium release from intracellular stores and was followed by a reduction in evoked transmitter release. The effect of htau42 on synaptic transmission was recapitulated by a peptide comprising the phosphatase-activating domain of tau, suggesting activation of phosphotransferases. Accordingly, findings indicated that htau42-mediated toxicity involves the activities of both GSK3 and Cdk5 kinases.
-
Pediatric cardiac arrest (CA) often leads to poor neurologic outcomes, including deficits in learning and memory. The only approved treatment for CA is therapeutic hypothermia, although its utility in the pediatric population remains unclear. This study analyzed the effect of mild therapeutic hypothermia after CA in juvenile mice on hippocampal neuronal injury and the cellular model of learning and memory, termed long-term potentiation (LTP). ⋯ Hypothermia (32°C) protects synaptic plasticity more effectively in females, with males requiring a deeper level of hypothermia (30°C) for equivalent protection. In conclusion, male and female juvenile mice exhibit equivalent neuronal injury following CA/CPR and hypothermia protects both males and females. We made the surprising finding that juvenile mice have a sexually dimorphic response to mild therapeutic hypothermia protection of synaptic function, where males may need a deeper level of hypothermia for equivalent synaptic protection.
-
Increasing evidence suggests that microRNAs (miRs) play a significant role in the pathogenesis of Parkinson's disease (PD). MiR-133b, which is significantly decreased in the PD midbrain, has recently been shown to promote neurite outgrowth and enhance neural functional recovery. However, the role of miR-133b in PD has not been clearly established. ⋯ Moreover, we demonstrated that the induced expression of miR-133b could inhibit α-synuclein, which is critically involved in the pathological process of PD. Furthermore, we found that overexpression of miR-133b abrogated the MPP(+)-induced decrease in the Bcl-2/Bax ratio and upregulated phosphorylated Akt (p-Akt), which is a pro-survival kinase. Together these findings reveal novel roles for miR-133b in the pathogenesis of PD and provide new therapeutic avenues for the treatment of the disease.
-
Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. ⋯ The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
-
Cellular differentiation is the process, by which a cell changes from one cell type to another, preferentially to the more specialized one. Calcium fluxes play an important role in this action. Differentiated NG108-15 or PC12 cells serve as models for studying neuronal pathways. ⋯ GYY4137 caused a rapid decrease in type 2 sarco/endoplasmic calcium ATPase (SERCA2) mRNA and protein, which results in lower calcium levels in the endoplasmic reticulum compared to the control, untreated group. The dbcAMP revealed rapid increase in expression of the type 3 IP3 receptor, which participates in a calcium clearance from the endoplasmic reticulum. These results point to the important role of reticular calcium in a NG108-15 cell differentiation.