Neuroscience
-
We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. ⋯ Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation.
-
Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1, TRPV1) ion channels expressed on nociceptive primary sensory neurons are important regulators of pain and inflammation. TRPA1 is activated by several inflammatory mediators including formaldehyde and methylglyoxal that are products of the semicarbazide-sensitive amine-oxidase enzyme (SSAO). SZV-1287 is a new 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime SSAO inhibitor, its chemical structure is similar to other oxime derivatives described as TRPA1 antagonists. ⋯ It also significantly inhibited the TRPA1, but not the TRPV1 activation-induced CGRP release from the peripheral sensory nerve endings in a concentration-dependent manner. In contrast, the reference SSAO inhibitor LJP 1207 with a different structure had no effect on TRPA1 or TRPV1 activation in either model system. This is the first evidence that our novel oxime compound SZV-1287 originally developed as a SSAO inhibitor has a potent dual antagonistic action on TRPA1 and TRPV1 ion channels on primary sensory neurons.
-
Chronic treatment with the monoamine releaser d-amphetamine has been consistently shown to decrease cocaine self-administration in laboratory studies and clinical trials. However, the abuse potential of d-amphetamine is an obstacle to widespread clinical use. Approaches are needed that exploit the efficacy of the agonist approach but avoid the abuse potential associated with dopamine releasers. ⋯ Tolerance developed to initial decreases in food-maintained responding in the third monkey and in the fourth subject, fluctuations were observed that were lower in magnitude than effects on cocaine self-administration. Cocaine dose-effect curves were shifted down and/or rightward in three monkeys. These data provide further support for the use of agonist medications for cocaine abuse, and indicate that the promising effects of d-amphetamine extend to a more clinically viable pharmacotherapy.
-
The neuropathic pain that results from peripheral nerve injury is associated with alterations in the properties of neurons in the superficial spinal laminae. Chronic constriction injury (CCI) of the rat sciatic nerve increases excitatory synaptic drive to excitatory neurons in the substantia gelatinosa while limiting that to inhibitory neurons. Since the calcium-binding protein calbindin D-28K has been associated with excitatory neurons, we examined whether CCI altered the properties of neurons expressing calbindin-like immunoreactivity (Cal+). ⋯ CCI did not alter the proportion of Cal+ neurons in the dorsal horn. Although CCI promoted a fourfold increase in sEPSC frequency in Cal+ neurons, sEPSC amplitude was reduced by 22% and charge transfer per second was unchanged. Since synaptic drive to Cal+ neurons is weak and there is no firm correlation between neuronal phenotype and calbindin expression, it is doubtful whether these neurons play a major role in the generation of central sensitization.
-
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a constellation of motor, cognitive, and psychiatric features. Striatal medium spiny neurons, one of the most affected populations, are dependent on brain-derived neurotrophic factor (BDNF) anterogradely transported from the cortex for proper function and survival. Recent studies suggest both receptors for BDNF, TrkB and p75 neurotrophin receptor (p75), are improperly regulated in the striata of HD patients and mouse models of HD. ⋯ Consistent with diminished survival signaling, DARPP-32 expression decreased both by immunoblotting and by immunohistochemistry in Hdh(+/Q175);p75(-/-) mice compared to Hdh(+/+);p75(+/+), Hdh(+/Q175);p75(+/+), and Hdh(+/+);p75(-/-) littermates. Additionally, striatal volume declined to a greater extent in Hdh(+/Q175);p75(-/-) when compared to Hdh(+/Q175);p75(+/+) littermates at 12 months, indicating a more aggressive onset of degeneration. These data suggest that p75 signaling plays an early role in augmenting pro-survival signaling in the striatum and that disruption of p75 signaling at a pre-symptomatic age may exacerbate pathologic changes in Hdh(+/Q175) mice.