Neuroscience
-
Sensorimotor reorganization is believed to play an important role in the development and maintenance of phantom limb pain, but pain itself might modulate sensorimotor plasticity induced by deafferentation. Clinical and basic research support this idea, as pain prior to amputation increases the risk of developing post-amputation pain. The aim of this study was to examine the influence of experimental tonic cutaneous hand pain on the plasticity induced by temporary ischemic hand deafferentation. ⋯ Post-hoc analyses revealed a significant difference between the two conditions during the Post-inflation phase (p=0.030) but no difference during the Pre-inflation phase (p=0.601). In other words, the corticospinal facilitation was greater when pain was present prior to cuff inflation. These results indicate that pain can modulate the plasticity induced by another event, and could partially explain the sensorimotor reorganization often reported in chronic pain populations.
-
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH)/Siah1 signaling pathway has been recognized as a sensor of nitric oxide (NO). It is associated with a variety of injurious conditions, suggesting its therapeutic potential for spinal cord injury (SCI). Sivelestat sodium (SIV), a neutrophil elastase (NE) inhibitor initially used to treat acute lung injury, has been known to protect against compression-induced and ischemic SCI. ⋯ We also found that SIV suppressed apoptosis, NE and inducible nitric oxide synthase (iNOS) protein expressions, the number of NE and iNOS immunostained cells, the production of interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α), and the activation of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) signaling in the spinal cord. The behavioral tests showed that SIV promoted functional recovery after traumatic SCI as reflected in the sustained increase in the Basso-Beattie-Bresnahan (BBB) scores throughout the observation period. In conclusion, our results reveal GAPDH/Siah1 as a novel signaling pathway during the progression of SCI, which can be blocked by SIV.
-
In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. ⋯ Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations.
-
Several studies have suggested that the thalamic centromedian-parafascicular (CM/PF or the PF in rodents) is implicated in the pathophysiology of Parkinson's disease (PD). However, inconsistent changes in the neuronal firing rate and pattern have been reported in parkinsonian animals. To investigate the impact of a dopaminergic cell lesion on PF extracellular discharge in behaving rats, the PF neural activities in the spike and local field potential (LFP) were recorded in unilaterally 6-hydroxydopamine- (6-OHDA) lesioned and neurologically intact control rats during rest and limb movement. ⋯ However, dopamine lesioning was associated with a decrease in neuronal spiking fire rate and reshaping in the firing pattern in the PF. The simultaneously recorded LFP activity exhibited a significant increase in power at 12-35Hz and a decrease in power at 0.7-12Hz compared with the control rats. These findings indicate that 6-OHDA induces modifications in PF spike and LFP activities in rats during rest and movement and suggest that PF dysfunction may be an important contributor to the pathophysiology of parkinsonian motor impairment.
-
In monolingual humans, language-related brain activation shows a distinct lateralized pattern, in which the left hemisphere is often dominant. Studies are not as conclusive regarding the localization of the underlying neural substrate for language in sequential language learners. Lateralization of the neural substrate for first and second language depends on a number of factors including proficiency and early experience with each language. ⋯ Thus, the avian auditory cortex may preserve lateralized neuronal traces of old and new tutor song memories, which are dependent on proficiency of song learning. There is striking resemblance in humans: early-formed language representations are maintained in the brain even if exposure to that language is discontinued. The switching of hemispheric dominance related to the acquisition of early auditory memories and subsequent encoding of more recent memories may be an evolutionary adaptation in vocal learners necessary for the behavioral flexibility to acquire novel vocalizations, such as a second language.