Neuroscience
-
The capacity to flexibly switch between different task rules has been previously associated with distributed fronto-parietal networks, predominantly in the left hemisphere for phasic switching sub-processes, and in the right hemisphere for more tonic aspects of task-switching, such as rule maintenance and management. It is thus likely that the white matter (WM) connectivity between these regions is critical in sustaining the flexibility required by task-switching. This study examined the relationship between WM microstructure in young adults and task-switching performance in different paradigms: classical shape-color, spatial and grammatical tasks. ⋯ No association was found with behavioral measures obtained in the grammatical task-switching paradigm. The switch costs, a measure of phasic switching processes, were not correlated with WM microstructure in any task. This study shows that a more efficient inter-hemispheric connectivity within the frontal lobes favors sustained task-switching processes, especially with task contexts embedding non-verbal components.
-
Autophagy plays an essential role in neurodevelopment, axonal guidance, neuropathic pain remission, and neuronal survival. Inhibiting the mammalian target of rapamycin (mTOR) signaling pathway can induce the occurrence of autophagy. In this study, we initially detected the effect of probucol on autophagy after spinal cord injury (SCI) by intraperitoneally injecting spinal cord-injured rats with probucol for 7days. ⋯ Immunofluorescence results indicated that the expression of Caspase-3 protein was evidently decreased and that of Beclin-1 protein was increased by probucol. Nissl staining and Basso, Beattie, and Bresnahan scores showed that the quantity and function of motor neurons were visibly preserved by probucol after SCI. This study showed that probucol inhibited the mTOR signaling pathway to induce autophagy, reduce neural cell apoptosis and promote recovery of neurological function after SCI.
-
Kynurenine pathway metabolites (KPM) are thought to be synthesized mainly by non-neuronal cells in the mammalian brain. KPM are of particular interest because several studies demonstrated their implication in various disorders of the nervous system. Among KPM is xanthurenic acid (XA) deriving from the catabolism of 3-hydroxykynurenine. ⋯ Our results also reveal that XA-like immunoreactivity is not expressed by glial cells. To double-check our findings, we have also used another XA antibody obtained from a commercial source to confirm the neuronal expression of XA. Together, our results suggest that, differently to several other KPM produced by glial cells, XA exhibits a neuronal distribution in the mouse brain.
-
Amphetamine withdrawal (AW) is accompanied by diminished pleasure and depression which plays a key role in drug relapse and addictive behaviors. There is no efficient treatment for AW-induced depression and underpinning mechanisms were not well determined. Considering both transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and N-Methyl-d-aspartate (NMDA) receptors contribute to pathophysiology of mood and addictive disorders, in this study, we investigated the role of TRPV1 and NMDA receptors in mediating depressive-like behaviors following AW in male mice. ⋯ None of aforementioned treatments had any effect on behavior of control animals. Collectively, our findings showed that activation of TRPV1 and blockade of NMDA receptors produced antidepressant-like effects in male mice following AW, and these receptors are involved in AW-induced depressive-like behaviors. Further, we found that rapid antidepressant-like effects of capsaicin in FST and splash test are partly mediated by NMDA receptors.
-
The spinal dorsal horn processes somatosensory information before conveying it to the brain. The neuronal organization of the dorsal horn is still poorly understood, although recent studies have defined several distinct populations among the interneurons, which account for most of its constituent neurons. All primary afferents, and the great majority of neurons in laminae I-III are glutamatergic, and a major factor limiting our understanding of the synaptic circuitry has been the difficulty in identifying glutamatergic synapses with light microscopy. ⋯ We also examined several populations of glutamatergic axons and found that most boutons were in contact with at least one Homer punctum. These results suggest that Homer antibodies can be used to reveal the great majority of glutamatergic synapses without antigen retrieval. This will be of considerable value in tracing synaptic circuits, and also in investigating plasticity of glutamatergic synapses in pain states.