Neuroscience
-
Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. ⋯ EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals.
-
Neurochemical alterations in Alzheimer's disease (AD) include cholinergic neuronal loss in the nucleus basalis of Meynert (nbM) and a decrease in densities of the M2 muscarinic receptor subtype in areas related to learning and memory. Neuromodulators present in the cholinergic pathways, such as neuropeptides and neurolipids, control these cognitive processes and have become targets of research in order to understand and treat the pathophysiological and clinical stages of the disease. This is the case of the endocannabinoid and galaninergic systems, which have been found to be up-regulated in AD, and could therefore have a neuroprotective role. ⋯ No changes were found in GalR1-mediated activity at this age. Our results provide further evidence of the relevance of limbic areas in the prodromal stage of AD, the profile of which is characterized by anxiety. The up-regulation of galaninergic and endocannabinoid systems support the hypothesis of their neuroprotective roles, and these are established prior to the onset of clear clinical cognitive symptoms of the disease.
-
Anodal transcranial direct current stimulation (tDCS) is known to increase the force-generating capacity of the skeletal muscles. However, when tDCS is concurrently combined with a motor task, interference may occur that hinders tDCS effects. Here, we tested the interaction and time course of tDCS effects on force production when paired with a low-level force-matching task. ⋯ There was no significant effect for knee flexion. This suggests that interference does not occur for force production tasks when tDCS is combined with a motor task. Rather, the task appears to aid and isolate the effects to the muscle groups involved in the task.
-
htau mice are deficient of murine tau but express all six human tau isoforms, leading to gradual tau misprocessing and aggregation in brain areas relevant to Alzheimer's disease. While histopathological changes in htau mice have been researched in the past, we focused here on functional consequences of human tau accumulation. htau mice and their background controls - murine tau knock-out (mtau(-/-)) and C57Bl/6J mice - underwent a comprehensive trial battery to investigate species-specific behavior, locomotor activity, emotional responses, exploratory traits, spatial and recognition memory as well as acquisition, retention and extinction of contextual fear at two, four, six, nine and twelve months of age. In htau mice, tau pathology was already present at two months of age, whereas deficits in food burrowing and spatial working memory were first noted at four months of age. ⋯ Aging mtau(-/-) mice also exhibited increased body mass and locomotor activity. These data highlight that reduced food-burrowing performance was the most robust aspect of the htau phenotype with aging. htau and mtau(-/-) deficits in food burrowing pointed at the necessity of intact tau systems for daily life activities. While some htau and mtau(-/-) deficits overlap, age differences between the two genotypes may reflect distinct functional effects and compared to C57Bl/6J mice, the htau phenotype appeared stronger than the mtau(-/-) phenotype at young ages but milder with aging.
-
Activation of angiotensinergic pathways by central aldosterone (Aldo)-mineralocorticoid receptor (MR) pathway plays a critical role in angiotensin II (Ang II)-induced hypertension. The subfornical organ (SFO) contains both MR and angiotensin II type 1 receptors (AT1R) and can relay the signals of circulating Ang II to downstream nuclei such as the paraventricular nucleus (PVN), supraoptic nucleus (SON) and rostral ventrolateral medulla (RVLM). In Wistar rats, subcutaneous (sc) infusion of Ang II at 500ng/min/kg for 1 or 2weeks increased reactive oxygen species (ROS) as measured by dihydroethidium (DHE) staining in a nucleus - specific pattern. ⋯ Both MR- and AT1aR-siRNA in the SFO prevented most of the Ang II-induced hypertension as assessed by telemetry. These results indicate that Aldo-MR signaling in the SFO is needed for the activation of Ang II-AT1R-ROS signaling from the SFO to the PVN and RVLM. Activation of Aldo-MR signaling from the SFO to the SON may enhance AT1R dependent activation of pre-sympathetic neurons in the PVN.