Neuroscience
-
Brain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. ⋯ These results overcome the conflicting data so far obtained with antidepressants on brain energy metabolism, because the enzymatic analyses were made on mitochondria with diversified neuronal in vivo localization, i.e. on somatic and synaptic. This research is the first investigation on the pharmacodynamics of antidepressants studied at subcellular level, in the perspective of (i) assessing the role of energy metabolism of cerebral mitochondria in animal models of mood disorders, and (ii) highlighting new therapeutical strategies for antidepressants targeting brain bioenergetics.
-
The use of more ethological animal models to study the neurobiology of anxiety has increased in recent years. We assessed the effect of an environmental enrichment (EE) protocol (24h/day over a period of two months) on anxiety-related behaviors when aged Wistar rats (21months old) were confronted with cat odor stimuli. Owing to the relationship between GABAergic interneurons and the anxiety-related neuronal network, we examined changes in the expression of Parvalbumin (PV) and 67kDa form of glutamic acid decarboxylase (GAD-67) immunoreactive cells in different brain regions involved in stress response. ⋯ Regarding the neurobiological data, the EE increased the expression of PV-positive cells in some medial prefrontal regions (cingulate (Cg) and prelimbic (PL) cortices), whereas the GAD-67 expression in the basolateral amygdala was reduced in the enriched group. Our results suggest that EE is able to reduce anxiety-like behaviors in aged animals even when ethologically relevant stimuli are used. Moreover, GABAergic interneurons could be involved in mediating this resilient behavior.
-
Early-life events have long-term effects on brain structures and cause behavioral alterations that persist into adulthood. The present experiments were designed to investigate the effects of prenatal stress on diazepam-induced withdrawal syndrome and serotonin-1A (5HT1A) receptor expression in the raphe nuclei of adult offspring. ⋯ To our knowledge, this study is the first to demonstrate that maternal exposure to chronic footshock stress enhances diazepam withdrawal symptoms and alters 5HT1A receptor gene expression in the raphe nuclei of adult offspring. Thus, more studies are needed to clarify the mechanisms underlying the decrease of 5HT1A receptors expression in the raphe nuclei of PS rats.
-
Prenatal stress is a risk factor for abnormal neuroanatomical, cognitive, behavioral and mental health outcomes with potentially transgenerational consequences. Females in general seem more resilient to the effects of prenatal stress than males. Here, we examined if repeated stress across generations may diminish stress resiliency and cumulatively enhance the susceptibility for adverse health outcomes in females. ⋯ MPS increased ephrin receptor A5 (Epha5), neuronal growth regulator (Negr1) and synaptosomal-associated protein 25 (Snap25) gene expression and reduced fibroblast growth factor 12 (Fgf12) in prefrontal cortex. These genes regulate neuronal maturation, arborization and synaptic plasticity and may explain altered brain cytoarchitectonics and connectivity. These findings emphasize that recurrent stress across generations may cumulatively increase stress vulnerability and the risk of adverse health outcomes through perinatal programing in females.
-
We previously found that oxytocin (OT) receptor (OTR) binding density in the medial amygdala (MeA) correlated positively with social interest (i.e., the motivation to investigate a conspecific) in male rats, while OTR binding density in the central amygdala (CeA) correlated negatively with social interest in female rats. Here, we determined the causal involvement of OTR in the MeA and CeA in the sex-specific regulation of social interest in adult rats by injecting an OTR antagonist (5ng/0.5μl/side) or OT (100pg/0.5μl/side) before the social interest test (4-min same-sex juvenile exposure). OTR blockade in the CeA decreased social interest in males but not females, while all other treatments had no behavioral effect. ⋯ This was further reflected by reduced CeA-OT release during social interest in females that expressed low compared to high social interest. We discuss the possibility that this reduction in OT release may be a consequence, rather than a cause, of exposure to a social stimulus. Overall, our findings show for the first time that extracellular OT release in the CeA is similar between males and females and that OTR in the CeA plays a causal role in the regulation of social interest toward juvenile conspecifics in males.