Neuroscience
-
Songbirds, like humans, learn vocalizations and their striatum recruits new neurons in adulthood. Injury in striatal vocal nucleus Area X, involved in song learning and production in songbirds, is followed by massive regeneration. The newborn neurons arise from the subventricular zone (SVZ) rich in dopamine D3 receptors (D3Rs). ⋯ Moreover, lesion alone prolonged the song duration and this may be facilitated by D3Rs in RA. Parallel lesion and stimulation of D3Rs prolonged it even more, while blocking of D3Rs abolished the lesion-induced effect. These data suggest that D3R stimulation after striatal injury accelerates the striatal recovery and can cause behavioral alterations.
-
Hindbrain dorsal vagal complex A2 noradrenergic signaling represses the pre-ovulatory luteinizing hormone (LH) surge in response to energy deficiency. Insulin-induced hypoglycemia augments A2 neuron adenosine 5'-monophosphate-activated protein kinase (AMPK) activity and estrogen receptor-beta (ERβ) expression, coincident with LH surge suppression. We hypothesized that ERβ is critical for hypoglycemia-associated patterns of LH secretion and norepinephrine (NE) activity in key reproduction-relevant forebrain structures. ⋯ Results provide novel evidence for ERβ-dependent caudal hindbrain regulation of LH and counter-regulatory hormone secretion during hypoglycemia. Observed inhibition of LH likely involves mechanisms at the axon terminal that impede GnRH neurotransmission. Data also show that caudal hindbrain ERβ exerts site-specific control of NE activity in forebrain projection sites during hypoglycemia, including the ARH where prepro-kisspeptin may be a target of that signaling.
-
Microglial cells are the pivotal immune cells of the central nervous system. Adult microglia cells under physiological conditions are in a ramification state with extensively branched processes. Upon disease stimulation, they retract their processes and become activated. ⋯ Mechanistic studies confirmed that the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signal, extracellular signal-regulated kinase 1/2 (ERK1/2) or small RhoGTPase activation mediated the effect of CC on microglial shape change based on the following observations: (i) CC induced a significant activation of the small RhoGTPase Rac1 and Cdc42; (ii) CC promoted the phosphorylation of ERK1/2 and Akt; (iii) inhibition of Rac1, Cdc42, ERK1/2, or the PI3K-Akt signal abolished the effect of CC on microglial shape change. These signal mechanisms were also ascertained in primary microglia. Our results explore a potential agent that promotes microglial ramification, and provide an alternative explanation for the neuroprotective effects of CC in various disease models such as brain ischemia and subarachnoid hemorrhage.
-
Motor neuron (MN) diseases are characterized by progressive cell degeneration, and excitotoxicity has been postulated as a causal factor. Using two experimental procedures for inducing excitotoxic spinal MN degeneration in vivo, by acute and chronic overactivation of α-amino-3-hydroxy-5-methyl-4-isoxazoleacetic acid (AMPA) receptors, we characterized the time course of the neuropathological changes. Electron transmission microscopy showed that acute AMPA perfusion by microdialysis caused MN swelling 1.5h after surgery and lysis with membrane rupture as early as 3h; no cleaved caspase 3 was detected by immunochemistry. ⋯ We conclude that acute AMPA-induced excitotoxicity induces MN loss by necrosis, while the progress of degeneration induced by chronic infusion is slow, starting with an early apoptotic process followed by necrosis. In both the acute and chronic procedures a correlation could be established between the loss of MN by necrosis, but not by caspase 3-linked apoptosis, and severe motor deficits and hindlimb paralysis. Our findings are relevant for understanding the mechanisms of neuron death in degenerative diseases and thus for the design of pharmacological therapeutic strategies.
-
Nuclear distribution element-like 1 (NDEL1/NUDEL) is a mammalian homolog of the Aspergillus nidulans nuclear distribution molecule NudE. NDEL1 plays a critical role in neuronal migration, neurite outgrowth and neuronal positioning during brain development; however within the adult central nervous system, limited information is available regarding NDEL1 expression and functions. Here, the goal was to examine inducible NDEL1 expression in the adult mouse forebrain. ⋯ Chromatin immunoprecipitation (ChIP) analysis identified a cAMP response element-binding protein (CREB) binding site within the CpG island proximal to the NDEL1 gene, and in vivo transgenic repression of CREB led to a marked downregulation of seizure-evoked NDEL1 expression. Together these data indicate that NDEL1 is inducibly expressed in the adult nervous system, and that signaling via the CREB/CRE transcriptional pathway is likely involved. The role of NDEL1 in neuronal migration and neurite outgrowth during development raises the interesting prospect that inducible NDEL1 in the mature nervous system could contribute to the well-characterized structural and functional plasticity resulting from repetitive seizure activity.