Neuroscience
-
Choline is essential to the development and function of the central nervous system and supplemental choline during development is neuroprotective against a variety of insults, including neurotoxins like dizocilpine (MK-801). MK-801 is an NMDA receptor antagonist that is frequently used in rodent models of psychological disorders, particularly schizophrenia. At low doses, it causes cognitive impairments, and at higher doses it induces motor deficits, anhedonia, and neuronal degeneration. ⋯ Using doublecortin and Ki67 to mark neurogenesis and cell division, respectively, in the hippocampus, we found that prenatal choline supplementation, in the face of MK-801 toxicity, protected against reduced hippocampal plasticity. Taken together, the current findings suggest that prenatal choline supplementation protects against a variety of behavioral and neural pathologies induced by the neurotoxin, MK-801. This research contributes to the growing body of evidence supporting the robust neuroprotective capacity of choline.
-
Adverse effects of nicotine during pregnancy have been greatly studied, while nowadays few works are focused on consequences of maternal tobacco smoking after birth. The present study investigated the behavioral and early neurochemical effects of nicotine treatment during first weeks of post-natal life in rats. We used "free choice" treatment (H2O+NIC dams could drink from two bottles, containing 10mg/L nicotine hydrogen tartrate salt, or water) versus "forced choice" (NIC+NIC mothers could drink from two bottles both containing nicotine hydrogen tartrate salt, range from 0.75mg/L to 4.09mg/L). ⋯ As expected, isolated rats displayed an aggressive form of soliciting behavior: when facing an isolated unknown partner, the non-isolated rat tried to escape. Interestingly, if their dams were exposed to forced nicotine, both rats sooner behaved very affiliative (possibly empathic) between non-sibling partners. As expected, being exposed to post-natal nicotine could alter neuro-chemical development, but with important interactions between both maternal care and adolescent social behavior.
-
Alzheimer's disease (AD) is the most common late onset neurodegenerative disorder with indications that women are disproportionately affected. Mitochondrial dysfunction has been one of the most discussed hypotheses associated with the early onset and progression of AD, and it has been attributed to intraneuronal accumulation of amyloid β (Aβ). It was suggested that one of the possible mediators for Aβ-impaired mitochondrial function is the nuclear factor kappa B (NF-κB) signaling pathway. ⋯ The pattern of changes in NF-κB signaling was the same in both brain structures, but was sex specific. Whereas in females there was an increase in all three subunits of NF-κB, in males we observed increase in p65 and p105, but no changes in p50 levels. These results demonstrate that mitochondrial function and inflammatory signaling in the AD-like brain is region- and sex-specific, which is an important consideration for therapeutic strategies.
-
Whether the CD38/cyclic ADP-ribose (cADPR) pathway plays a protective or detrimental role in neuroinflammation remains controversial. This study aimed to determine the role of CD38 in neuroinflammation using lipopolysaccharide (LPS)-stimulated BV2 microglial cells and co-cultured Neuro-2a (N2a) cells. In monoculture experiments, BV2 cells were divided into control, CD38 interference (CD38Ri), negative control (NC), LPS, CD38Ri+LPS, NC+LPS and 8-Br-cADPR+LPS groups. ⋯ Co-culture with CD38 knockdown or 8-Br-cADPR-treated BV2 cells did not influence apoptosis or iNOS expression in N2a cells. In conclusion, our results indicate that blocking the CD38/cADPR pathway reduces intracellular Ca2+, NO and the secretion of proinflammatory cytokines. CD38 knockdown exerted a detrimental effect in apoptosis and NO production in normal microglia, but played a protective role in apoptosis and NO production in LPS-stimulated microglia.
-
Adolescence has been identified as a vulnerable developmental time period during which exposure to drugs can have long-lasting, detrimental effects. Although adolescent binge-like ethanol (EtOH) exposure leads to a significant reduction in forebrain cholinergic neurons, EtOH's functional effect on acetylcholine (ACh) release during behavior has yet to be examined. Using an adolescent intermittent ethanol exposure model (AIE), rats were exposed to binge-like levels of EtOH from postnatal days (PD) 25 to 55. ⋯ In contrast, AIE rats were impaired during the first attentional set shift on an operant set-shifting task, indicative of an EtOH-mediated deficit in cognitive flexibility. A unique pattern of cholinergic cell loss was observed in the basal forebrain following AIE: Within the medial septum/diagonal band there was a selective loss (30%) of choline acetyltransferase (ChAT)-positive neurons that were nestin negative (ChAT+/nestin-); whereas in the Nucleus basalis of Meynert (NbM) there was a selective reduction (50%) in ChAT+/nestin+. These results indicate that early adolescent binge EtOH exposure leads to a long-lasting frontocortical functional cholinergic deficit, driven by a loss of ChAT+/nestin+ neurons in the NbM, which was associated with impaired cognitive flexibility during adulthood.