Neuroscience
-
Neurons coding spatial location (grid cells) are found in medial entorhinal cortex (MEC) and demonstrate increasing size of firing fields and spacing between fields (grid scale) along the dorsoventral axis. This change in grid scale correlates with differences in theta frequency, a 6-10Hz rhythm in the local field potential (LFP) and rhythmic firing of cells. A relationship between theta frequency and grid scale can be found when examining grid cells recorded in different locations along the dorsoventral axis of MEC. ⋯ All known anxiolytic drugs decrease hippocampal theta frequency despite their differing mechanisms of action. Specifically, anxiolytics decrease the intercept of the theta frequency-running speed relationship in the hippocampus. Here we demonstrate that anxiolytics decrease the intercept of the theta frequency-running speed relationship in the MEC, similar to hippocampus, and the decrease in frequency through this change in intercept does not affect grid scale.
-
The present study characterized quantitatively sexual dimorphic development of gyrification by MRI-based morphometry. High spatial-resolution 3D MR images (using RARE sequence with short TR and minimum TE setting) were acquired from fixed brain of male and female ferrets at postnatal days (PDs) 4-90 using 7-tesla preclinical MRI system. The gyrification index was evaluated either throughout the cerebral cortex (global GI) or in representative primary sulci (sulcal GI). ⋯ In the sulcal GI, sulcus-specific male-over-female GI was revealed in the rhinal fissure, and presylvian sulcus on PD 42, and additionally in the coronal, splenial, lateral, and caudal suprasylvian sulci on PD 90. The current results suggest that age-related sexual dimorphism of the gyrification was biphasic in the ferret cortex. A male-over-female gyrification was allometric by PD 21, and was thereafter specific to primary sulci located on phylogenetically newer multimodal cortical regions.
-
In the rat, the rubrospinal tract (RST) is a descending motor pathway involved in the production of skilled reaching movement. The RST originates in the red nucleus in the midbrain and runs down the spinal cord in the lateral most aspect of the dorsolateral funiculus (DLF). The RST makes monosynaptic contact with interneurons within the intermediate laminae of the cord, however a contingent of RST axons constitutes direct supraspinal input for spinal cord motor neurons. ⋯ The total number of large, medium and small motor neurons in these segments was estimated with stereological techniques in both ventral horns at 1, 3, 7 and 14days post-injury. In both spinal cord segments under investigation, no change was detected in mean number of motor neurons over time, in either ventral horn. That the loss of direct supraspinal input resulting from the RST transection does not affect the viability of motor neurons caudal to the injury indicates that these neurons have the potential to be re-innervated, should the RST injury be repaired.
-
Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. ⋯ The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm2 in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm2 in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI.
-
Odors are typically bimodal in nature, interacting with the olfactory and trigeminal systems. The trigeminal component may be noticed (e.g. menthol) or perceptually ignored, leading to different neural substrates being recruited during odor encoding. Therefore, the current study was designed to explore the perceptual and central-nervous activations in response to pleasant bimodal odors using functional magnetic resonance imaging (fMRI). ⋯ This includes large bilateral activations within the OFC, insula, cerebellum and parts of the cingulate cortex. Additionally, activation of the thalamus was seen early in the stages of bimodal odor encoding suggesting its role of mediating attention toward the presence of two stimuli. Lastly, intensity encoding during bimodal processing shows overlap of previously demonstrated simple trigeminal encoding areas (medial cingulate cortex) and the more complex olfactory encoding areas (bilateral insula, superior temporal gyrus, OFC, and cerebellum), but not the amygdala.