Neuroscience
-
Deregulation of glutamate homeostasis is associated with degenerative neurological disorders. Glutamate dehydrogenase (GDH) is important for glutamate metabolism and plays a central role in expanding the pool of tricarboxylic acid (TCA) cycle intermediate alpha-ketoglutarate (α-KG), which improves overall bioenergetics. Under high energy demand, maintenance of ATP production results in functionally active mitochondria. ⋯ We also found that beta-lapachone increased glutamate utilization, accompanied by a reduction in extracellular glutamate. Thus, our hypothesis that mitochondrial GDH activators increase α-KG production as an alternative energy source for use in the TCA cycle under energy-depleted conditions was confirmed. Our results suggest that increasing GDH-mediated glutamate oxidation represents a new therapeutic intervention for neurodegenerative disorders, including stoke.
-
Every spring, deer cast their old antlers and initiate a regeneration process, which yields a new set of antlers of up to 1m in length. Over the course of three months, branches of the trigeminal nerve, originating from the frontal skull, innervate velvet, a modified skin that covers the regenerating antler. The rate of growth of these axons reaches up to 2cm per day making them the fastest regenerating axons in adult mammals. ⋯ Our proteomic analyses identified several axon growth promoters in the velvet-conditioned medium (VCM), including soluble proteins such as nerve growth factor (NGF) and apolipoprotein A-1, as well as matrix extracellular proteins, such as periostin and SPARC. Additional in vitro analyses allowed us to determine that a synergic relationship between periostin and NGF may contribute to neurite growth-promoting effects of velvet secretome. A combinatorial approach using these factors may promote regeneration at high speeds in patients with peripheral neuropathies.
-
Although it is still debated whether vasoconstriction underlies migraine resolution by triptans, they are not recommended in patients at cardiovascular risk. However, relationship between stroke incidence and triptan use is unclear, and it is unknown whether acute or chronic use of these drugs worsens ischemic brain injury. To address this issue, we investigated the effect of clinically-relevant doses of the potent cerebral artery vasoconstrictor eletriptan on cerebral blood flow (CBF) and brain infarct volumes, as well as on expression of genes involved in cerebrovascular regulation. ⋯ Finally, chronic eletriptan reduced brain mRNAs for PACAP and VIP, leaving unaffected those for 5HT1B/DR and CGRP. No significant transcript changes were found in dura mater. Data suggest that the impact of triptans on cerebral hemodynamic should be re-evaluated, as well as their propensity to increase stroke risk in migraineurs.
-
The interaction of early life stress (ELS) and the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) has been associated with increased risk to develop depression in later life. We have used the maternal separation paradigm as a model for ELS exposure in homozygous and heterozygous 5-HTT knockout rats and measured urocortin 1 (Ucn1) mRNA and/or protein levels, Ucn1 DNA methylation, as well as 5-HT innervation in the centrally projecting Edinger-Westphal (EWcp) and dorsal raphe (DR) nuclei, both implicated in the regulation of stress response. We found that ELS and 5-HTT genotype increased the number of 5-HT neurons in specific DR subdivisions, and that 5-HTT knockout rats showed decreased 5-HT innervation of EWcp-Ucn1 neurons. ⋯ In contrast, 5-HTT deficiency was associated with site-specific alterations in DNA methylation of the Ucn1 promoter, and heterozygous 5-HTT knockout rats showed decreased expression of CRF receptor 1 in the EWcp. Together, our findings extend the existing literature on the relationship between EWcp-Ucn1 and DR-5-HT neurons. These observations will further our understanding on their potential contribution to mediate affect as a function of ELS interacting with 5-HTTLPR.
-
Interleukin-1β (IL-1β) and prostaglandin (PG) D2 are endogenous sleep-promoting substances. Since it was reported that a highly selective cyclooxygenase-2 (COX-2) inhibitor, NS398, completely inhibited IL-1β-induced sleep in rats, IL-1β-induced sleep had been believed to be mediated by prostanoids, most probably PGD2. ⋯ Meanwhile, IL-1β at doses of 1.7 and 5μg/kg also significantly increased NREM sleep for 6h after intraperitoneal injection at 20:00 (light-off time) by 76.8% and 121.1%, respectively, in wild-type (WT) mice, by 67.7% and 147.3%, respectively, in WT mice pretreated with NS398 (5mg/kg) and by 108.9% and 121.6%, respectively, in PGD2 receptor (DP1R) knockout mice. These results indicate that IL-1β-induced NREM sleep is independent of the PGD2/DP1R system and other COX-2-derived prostaglandins in rats and mice.