Neuroscience
-
Blast exposure can cause tinnitus and hearing impairment by damaging the auditory periphery and direct impact to the brain, which trigger neural plasticity in both auditory and non-auditory centers. However, the underlying neurophysiological mechanisms of blast-induced tinnitus are still unknown. ⋯ We also observed an increased bursting rate in the low-frequency region at one month after blast exposure and in all frequency regions at three months after exposure. Taken together, spontaneous firing and bursting activity in the AC played an important role in blast-induced chronic tinnitus as opposed to acute tinnitus, thus favoring a bottom-up mechanism.
-
GM1 gangliosides (GM1) are acidic glycosphingolipids that are present in cell membranes and lipid raft domains, being particularly abundant in central nervous systems. GM1 participate in modulating cell membrane properties, intercellular recognition, cell regulation, and signaling. We previously demonstrated that GM1 are expressed inside astrocytes but not on the cell surface. ⋯ Interestingly, this increase in GM1 expression induced the accumulation of autophagosomes in astrocytes. Moreover, the effect of haloperidol on the σ1R induced a decrease in GM1 in the cellular membrane of astrocytes. These findings suggested that the effects of haloperidol on the σ1R induced GM1 accumulation in the autophagosomes of astrocytes through activating the ERK pathway and a decrease in GM1 expression on the cell surface.
-
Nicotinic acetylcholine receptors (nAChRs) produce widespread and complex effects on neocortex excitability. We studied how heteromeric nAChRs regulate inhibitory post-synaptic currents (IPSCs), in fast-spiking (FS) layer V neurons of the mouse frontal area 2 (Fr2). In the presence of blockers of ionotropic glutamate receptors, tonic application of 10μM nicotine augmented the spontaneous IPSC frequency, with minor alterations of amplitudes and kinetics. ⋯ We conclude that α4β2∗ nAChRs can produce sustained regulation of FS cells in Fr2 layer V. The effect presents a presynaptic component, whereas the somatic regulation decreases with age. These mechanisms may contribute to the nAChR-dependent stimulation of excitability during cognitive tasks as well as to the hyperexcitability caused by hyperfunctional heteromeric nAChRs in sleep-related epilepsy.
-
Although it is still debated whether vasoconstriction underlies migraine resolution by triptans, they are not recommended in patients at cardiovascular risk. However, relationship between stroke incidence and triptan use is unclear, and it is unknown whether acute or chronic use of these drugs worsens ischemic brain injury. To address this issue, we investigated the effect of clinically-relevant doses of the potent cerebral artery vasoconstrictor eletriptan on cerebral blood flow (CBF) and brain infarct volumes, as well as on expression of genes involved in cerebrovascular regulation. ⋯ Finally, chronic eletriptan reduced brain mRNAs for PACAP and VIP, leaving unaffected those for 5HT1B/DR and CGRP. No significant transcript changes were found in dura mater. Data suggest that the impact of triptans on cerebral hemodynamic should be re-evaluated, as well as their propensity to increase stroke risk in migraineurs.
-
The neuropeptide PACAP modulates synaptic transmission in the hippocampus exerting multiple effects through different receptor subtypes: the underlying mechanisms have not yet been completely elucidated. The neurotransmitter acetylcholine (ACh) also exerts a well-documented modulation of hippocampal synaptic transmission and plasticity. Since PACAP was shown to stimulate ACh release in the hippocampus, we tested whether PACAP acting through ACh might indirectly modulate glutamate-mediated synaptic transmission at a pre- and/or at a post-synaptic level. ⋯ At a higher concentration (10nM), PACAP inhibited EPSCsAMPA: this effect persisted in the presence of ACh receptor antagonists and did not involve any change in PPF or in mEPSC frequency, thus was not mediated by ACh and was exerted post- synaptically on CA1 pyramidal neurons. We suggest that a high-affinity PAC1 receptor pre-synaptically modulates hippocampal glutamatergic transmission acting through ACh. Therefore, administration of PACAP at very low doses might be envisaged in cognitive diseases with reduced cholinergic transmission.