Neuroscience
-
Human Albumin is a unique pleiotropic protein with multiple properties. Previous clinical and laboratory studies have indicated a possible beneficial effect of Albumin in subarachnoid hemorrhage (SAH). The present study aimed to further define the preclinical characteristics of Albumin. ⋯ In female rats and spontaneously hypertensive rats, Albumin likewise improved neurological outcomes and early brain injury. In conclusion, Albumin could reduce both cerebral lesions and functional deficits in the early stage of SAH. The beneficial regimen occurs within a favorable therapeutic window and is reproducible in different high-risk subjects.
-
Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) causes bloody diarrhea and Hemolytic Uremic Syndrome (HUS) that may derive to fatal neurological outcomes. Neurological abnormalities in the striatum are frequently observed in affected patients and in studies with animal models while motor disorders are usually associated with pyramidal and extra pyramidal systems. A translational murine model of encephalopathy was employed to demonstrate that systemic administration of a sublethal dose of Stx2 damaged the striatal microvasculature and astrocytes, increase the blood brain barrier permeability and caused neuronal degeneration. ⋯ The injury observed in the striatum coincided with locomotor behavioral alterations. The anti-inflammatory Dexamethasone resulted to prevent the observed neurologic and clinical signs, proving to be an effective drug. Therefore, the present work demonstrates that: (i) systemic sub-lethal Stx2 damages the striatal neurovascular unit as it succeeds to pass through the blood brain barrier. (ii) This damage is aggravated by the contribution of LPS which is also produced and secreted by EHEC, and (iii) the observed neurological alterations may be prevented by an anti-inflammatory treatment.
-
Multiple sclerosis (MS) is an autoimmune disease in which more than 70% of patients experience visual disturbance as the earliest symptoms. Lysolecithin (LPC)-induced focal demyelination model has been developed to evaluate the effects of different therapies on myelin repair improvement. In this study, the effects of pregabalin administration on myelin repair and glial activation were investigated. ⋯ Luxol fast blue staining and immunostaining against PLP, as mature myelin marker, showed that myelin repair was improved in animals received pregabalin treatment. In addition, pregabalin effectively reduced the expression of GFAP and Iba1 as activated glial markers in optic chiasm. The present study indicates that pregabalin administration enhances myelin repair and ameliorates glial activation of optic chiasm following local injection of LPC.
-
Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and is stored and released by both neurons and astrocytes. Despite the important role of glutamate as a neurotransmitter, elevated extracellular glutamate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is a naturally occurring sodium salt of glutamic acid that is used as a flavor enhancer in many processed foods. ⋯ Indeed, we found that exposure to MSG from postnatal days 4 through 10 resulted in significantly fewer neurons in the cochlear nuclei and SOC and significant dysmorphology in surviving neurons. Moreover, we found that neonatal MSG exposure resulted in a significant decrease in the expression of both calretinin and calbindin. These results suggest that neonatal exposure to MSG interferes with early development of the auditory brainstem and impacts expression of calcium binding proteins, both of which may lead to diminished auditory function.
-
Nitric oxide donors are known to produce headache in healthy as well as migraine subjects, and to induce extracephalic cutaneous hypersensitivity in rodents. However, little is known on the effect of nitric oxide donors on cephalic cutaneous sensitivity. Combining behavioral, immunohistochemical, and in vivo electrophysiological approaches, this study investigated the effect of systemic administration of the nitric oxide donor, isosorbide dinitrate (ISDN), on cephalic and extracephalic cutaneous sensitivity and on neuronal activation within the medullary dorsal horn (MDH) in the rat. ⋯ Using in vivo electrophysiological unit recordings, we show that ISDN administration never affected the spontaneous activity of trigeminal wide dynamic range neurons, but, facilitated C-fiber-evoked responses in half the neurons tested. This research demonstrates that a nitric oxide donor, isosorbide dinitrate, induces selectively cephalic hyperalgesia that arises as a consequence of central sensitization in pain pathways that subserve meningeal nociception. This model better mimics the clinical condition and offers another possibility of studying the role of nitric oxide donor in the physiopathology of headache.