Neuroscience
-
Epilepsy is a neurological disease related to the occurrence of pathological oscillatory activity, but the basic physiological mechanisms of seizure remain to be understood. Our working hypothesis is that specific sensory processing circuits may present abnormally enhanced predisposition for coordinated firing in the dysfunctional brain. Such facilitated entrainment could share a similar mechanistic process as those expediting the propagation of epileptiform activity throughout the brain. ⋯ However, at the transition from the physiological to pathological state (pre-ictal period), the WAR ASSR analysis demonstrated a decline in normalized energy and a significant increase in circular variance values compared to that of controls. These results indicate an enhanced coordinated firing state for WARs, except immediately before seizure onset (suggesting pre-ictal neuronal desynchronization with external sensory drive). These results suggest a competing myriad of interferences among different networks that after seizure onset converge to a massive oscillatory circuit.
-
Increasing evidence suggests that cardiovascular exercise has positive effects on motor memory consolidation. In this study, we investigated whether a single session of high-intensity interval training (HIIT) mitigates the effects of practicing an interfering motor task. Furthermore, learning and interference effects were assessed in the actively trained and untrained limb as it is known that unilateral motor learning can cause bilateral adaptations. ⋯ The results were similar in the trained and untrained limb. The current results imply that a single session of cardiovascular exercise can prevent motor interference in the trained and untrained hemisphere. Overall learning was best, and interference least, when HIIT was performed before the interfering motor task.
-
Brain manganese deposition is led by liver dysfunction and/or portal-systemic shunting in minimal hepatic encephalopathy (MHE). Manganese is toxic and can cause cognitive disorders and extrapyramidal symptoms. Thus, reduction of manganese intake might be considered as a potential treatment strategy for MHE. ⋯ However, a significantly shorter MWM escape latency, increased locomotor activity, shorter NBT latency and total time, lower blood ammonia, lower brain manganese content and lower GS activity were found in MHE-N rats after no-manganese feed treatment. Partial improvements were found in MHE rats with half-manganese feed treatment. Reduction of manganese intake can significantly improve the cognitive and locomotor situations in MHE rats by reducing brain manganese content and regulating GS activity.
-
The topology of the respiratory network in the brainstem has been addressed using different computational models, which help to understand the functional properties of the system. We tested a neural mass model by comparing the result of activation and inhibition of inhibitory neurons in silico with recently published results of optogenetic manipulation of glycinergic neurons [Sherman, et al. (2015) Nat Neurosci 18:408]. The comparison revealed that a five-cell type model consisting of three classes of inhibitory neurons [I-DEC, E-AUG, E-DEC (PI)] and two excitatory populations (pre-I/I) and (I-AUG) neurons can be applied to explain experimental observations made by stimulating or inhibiting inhibitory neurons by light sensitive ion channels.
-
HYBID (HYaluronan Binding Protein Involved in hyaluronan [HA] Depolymerization, KIAA1199) is one of the HA binding proteins that is involved in the depolymerization of HA. HYBID mRNA is highly expressed in the brain, however, the role of HYBID in the brain remains unclear. In this study, we bred Hybid knock-out (KO) mice and evaluated the function of Hybid in the central nervous system. ⋯ Hybid KO mice did not differ in behavior from wild-type mice in the open field test, evaluation of acoustic startle responses, or drug-induced seizure test. In real-time PCR, Hyal1 and Hyal2 mRNA levels, which code hyaluronidases 1 and 2, respectively, did not differ between the Hybid KO and wild-type mouse brain. These results indicate that Hybid plays a key role in memory function in the brain.