Neuroscience
-
Semaphorins comprise a family of proteins involved in axon guidance during development. Semaphorin4D (Sema4D) has both neuroregenerative and neurorepressive functions, being able to stimulate both axonal outgrowth and growth cone collapse during development, and therefore could play an important role in neurological recovery from traumatic injury. Here, we used a zebrafish spinal cord transection model to study the role of Sema4D in a system capable of neuroregeneration. ⋯ Anterograde and retrograde tracing indicate that Sema4D participates in axon regeneration in the spinal cord following spinal cord injury (SCI) in the zebrafish. Swim tracking shows that MO-mediated inhibition of Sema4D retarded the recovery of swimming function when compared to standard control MO. The combined results indicate that Sema4D expression in motoneurons enhances locomotor recovery and axon regeneration, possibly by regulating microglia function, after SCI in adult zebrafish.
-
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. ⋯ In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease.
-
Exposure to acute stress leads to diverse changes, which include either beneficial or deleterious effects on molecular levels that are implicated in stress-related disorders. N-methyl-d-aspartate receptor (NMDAR)-mediated signalings, are thought to be vital players in stress-related mental disorders as well as attractive therapeutic targets for clinical treatment. In the present study, we utilized acute stress models in mice to explore regulation of phosphorylation level of S1284 in GluN2B subunit of NMDAR. ⋯ Moreover, phosphorylation change of S1284 was negated by treatment of roscovitine which is believed to be a Cyclin-dependent kinase inhibitor. Besides, we showed well correlation of phosphorylation change of S1284 and immobility time during forced swimming. Collectively, our results demonstrated that phosphorylation level of S1284 in GluN2B was regulated by acute stress.
-
Sodium-activated potassium (KNa) channels contribute to firing frequency adaptation and slow after hyperpolarization. The KCNT1 gene (also known as SLACK) encodes a KNa subunit that is expressed throughout the central and peripheral nervous systems. Missense mutations of the SLACK C-terminus have been reported in several patients with rare forms of early onset epilepsy and in some cases severely delayed myelination. ⋯ Loxapine exhibited no effect, indicating that this mutation either caused the channel to be insensitive to this established opener or proper translation and trafficking to the membrane was disrupted. Protein analysis confirmed that while total mutant protein did not differ from wild type, membrane expression of the mutant channel was substantially reduced. Although gain-of-function mutations to the Slack channel are linked to epileptic phenotypes, this is the first reported loss-of-function mutation linked to severe epilepsy and delayed myelination.
-
The stimuli that commonly activate the catecholaminergic C1 neurons (nociception, hypotension, and hypoxia) also increase breathing. Pharmacogenetic evidence suggests that catecholaminergic neurons regulate breathing. Therefore, we evaluated whether the loss of C1 cells affects cardiorespiratory control during resting, hypoxic (8% O2) and hypercapnic (7% CO2) conditions. ⋯ Bilateral depletion of C1 neurons did not alter cardiorespiratory variables during rest and hypercapnia (7% CO2), but it did affect the response to hypoxia. Specifically, the increase in ventilation, the number of sighs, and the tachycardia were reduced, but unexpectedly, the mean arterial pressure increased during hypoxia (8% O2). The present study indicates that C1 neurons contribute to cardiorespiratory control during hypoxia rather than at rest or during hypercapnia.