Neuroscience
-
The mechanism of action of botulinum neurotoxin type A (BoNT/A) is well characterized, but some published evidence suggests the potential for neuronal retrograde transport and cell-to-cell transfer (transcytosis) under certain experimental conditions. The present study evaluated the potential for these processes using a highly selective antibody for the BoNT/A-cleaved substrate (SNAP25197) combined with 3-dimensional imaging. SNAP25197 was characterized in a rat motor neuron (MN) pathway following toxin intramuscular injections at various doses to determine whether SNAP25197 is confined to MNs or also found in neighboring cells or nerve fibers within spinal cord (SC). ⋯ Therefore, under the present experimental conditions, our results suggest that BoNT/A is confined to MNs and any evidence of distal activity is due to limited systemic spread of the toxin at higher doses and not through transcytosis within SC. Lastly, at higher doses of BoNT/A, SNAP25197 was expressed throughout MNs and colocalized with synaptic markers on the plasma membrane at 6 days post-treatment. These data support previous studies suggesting that SNAP25197 may be incorporated into SNARE-protein complexes within the affected MNs.
-
Neonatal brain injury is a problem of global importance. To date, no causal therapies are available. A substance with considerable therapeutic potential is the endogenous neuropeptide secretoneurin (SN), which has proven to be beneficial in adult stroke. ⋯ SN has neuroprotective potential in neonatal brain injury. Its main action seems to be inhibition of apoptosis in the aftermath of the insult, predominantly in the hypoxic-only hemisphere. This might be explained by the less pronounced injury in this hemisphere, where blood flow and thus nutrient supply are maintained.
-
Functions of the hippocampus are segregated along its long axis and emerging evidence shows that the local circuitry is specialized accordingly. Sharp waves (SPWs) and ripples are a basic hippocampal network activity implicated in memory processing. Using recordings from the CA1 field of both dorsal (DH) and ventral (VH) rat hippocampal slices we found that SPWs are larger, shorter and occur much more frequently in the VH than in the DH. ⋯ Isolated unit complex spike bursts display a significantly lower number of spikes and longer inter-spike intervals in the VH than in the DH suggesting that the synaptically driven neuronal excitability is lower in the VH. We propose that to some extent these differences result from the relatively higher network excitability of the VH compared with DH. Furthermore, they might reflect specializations that provide the local circuitries of the DH and VH with the required optimal ability for synaptic plasticity and might also suggest that the VH could be a favored site of SPW-Rs initiation.