Neuroscience
-
A challenge in working with preclinical models of neurodegeneration has been how to non-invasively monitor disease progression. Neurofilament proteins are established axonal damage markers and have been found to be elevated in cerebrospinal fluid (CSF) and blood from patients with neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD) and tauopathies. We hypothesized that CSF neurofilament light (NF-L) can be used to track progression of neurodegeneration and potentially monitor the efficacy of novel therapeutic agents in preclinical development. ⋯ We found a significant correlation between CSF NF-L and plasma NF-L in Tg4510, suggesting a similar biomarker potential of plasma NF-L. Also, CSF NF-L correlated significantly with tau in Tg4510 brains, suggesting a surrogate biomarker potential of CSF NF-L. Overall, our findings provide further evidence that NF-L correlates with disease severity and our results suggests, that CSF NF-L has utility as a surrogate or adjunct biomarker for neurodegeneration in the Tg4510 model, but independent validation is warranted.
-
Mutations in the PI3K/Akt/mTOR signaling pathway or in the upstream negative regulator Pten cause human brain overgrowth disorders, such as focal cortical dysplasia and megalencephaly, and are characterized by the presence of hypertrophic neurons. These disorders often have a pediatric onset and a high comorbidity with drug-resistant epilepsy; however, effective pharmacological treatments are lacking. We established forebrain excitatory neuron-specific Pten-deficient cultures as an in vitro model of brain overgrowth disorders, and investigated the effects of this Pten mutation on PI3K/Akt/mTOR signaling and neuronal growth. ⋯ We found that RAD001 treatment only partially reversed the morphological abnormalities of Pten mutant neurons, whereas MK-2206 treatment completely rescued the phenotype. Interestingly, neither treatment altered the size or morphology of normal neurons. Our results suggest that Akt is a major determinant of neuronal growth, and that Akt inhibition may be an effective strategy for pharmacological intervention in brain overgrowth disorders.
-
The concentrations of fourteen neurochemicals associated with metabolism, neurotransmission, antioxidant capacity, and cellular structure were measured noninvasively from two distinct brain regions using (1)H magnetic resonance spectroscopy. Seventeen young adults (age 19-22years) and sixteen cognitively normal older adults (age 70-88years) were scanned. To increase sensitivity and specificity, (1)H magnetic resonance spectra were obtained at the ultra-high field of 7T and at ultra-short echo time. ⋯ In the posterior cingulate cortex (PCC), the concentrations of neurochemicals associated with energy (i.e., creatine plus phosphocreatine), membrane turnover (i.e., choline containing compounds), and gliosis (i.e., myo-inositol) were higher in the older adults while the concentrations of N-acetylaspartylglutamate (NAAG) and phosphorylethanolamine (PE) were lower. In the occipital cortex (OCC), the concentration of N-acetylaspartate (NAA), a marker of neuronal viability, concentrations of the neurotransmitters Glu and NAAG, antioxidant ascorbate (Asc), and PE were lower in the older adults while the concentration of choline containing compounds was higher. Altogether, these findings shed light on how the human brain ages differently depending on region.
-
The A5 area at the ventrolateral pons contains noradrenergic neurons connected with other medullary areas involved in the cardiorespiratory control. Its contribution to the cardiorespiratory regulation was previously evidenced in anesthetized conditions. In the present study, we investigated the involvement of the A5 noradrenergic neurons to the basal and chemoreflex control of the sympathetic and respiratory activities in unanesthetized conditions. ⋯ In adult rats, lesions of A5 noradrenergic neurons did not modify the reflex cardiorespiratory adjustments to hypoxia (7% O2) and hypercapnia (7% CO2). In the in situ preparations, the sympatho-excitation, but not the PN reflex response, elicited by either the stimulation of peripheral chemoreceptors (ΔtSN: 110±12% vs 58±8%, P<0.01) or hypercapnia (ΔtSN: 9.5±1.4% vs 3.9±1.7%, P<0.05) was attenuated in A5-lesioned rats compared to controls. Our data demonstrated that A5 noradrenergic neurons are part of the circuitry recruited for the processing of sympathetic response to hypoxia and hypercapnia in unanesthetized conditions.
-
Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. ⋯ Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory.