Neuroscience
-
Wntless (Wls) is implicated in the Wnt signaling pathway by regulating the secretion of Wnt molecules. During brain development, Wls is expressed in the isthmic organizer (ISO) and rhombic lip (RL). Wls regulates Wnt1 secretion at the ISO which is required to induce midbrain-hindbrain structures. ⋯ The Wls-cKO cerebellum also exhibits ectopia of several cell types and aberrations in granule cell organization. Finally, there is a loss of 85% of unipolar brush cells. From these findings, Wls-expressing cells in the rhombic lip are implicated in the orchestration of cerebellar development.
-
Emerging research provides strong evidence that activation of CNS glial cells occurs in neurological diseases and brain injury and results in elevated production of neuroimmune factors. These factors can contribute to pathophysiological processes that lead to altered CNS function. Recently, studies have also shown that both acute and chronic alcohol consumption can produce activation of CNS glial cells and the production of neuroimmune factors, particularly the chemokine ligand 2 (CCL2). ⋯ Transgenic mice and their non-transgenic littermate controls were subjected to one of two alcohol exposure paradigms, a two-bottle choice alcohol drinking procedure that does not produce alcohol dependence or a chronic intermittent alcohol procedure that produces alcohol dependence. Several behavioral tests were carried out including the Barnes maze, Y-maze, cued and contextual conditioned fear test, light-dark transfer, and forced swim test. Comparisons between alcohol naïve, non-dependent, and alcohol-dependent CCL2 transgenic and non-transgenic mice show that elevated levels of CCL2 in the CNS interact with alcohol in tests for alcohol drinking, spatial learning, and associative learning.
-
In the present study, we investigated the possible participation of the endocannabinoid system in the basolateral amygdala and N-methyl-d-aspartate (NMDA) or GABA-A receptor neurotransmission in the ventral tegmental area in the memory consolidation impairment induced by morphine administration. To measure memory formation, step-through type passive avoidance apparatus was used with adult male Wistar rats. The results showed that intraperitoneal (i.p.) administration of morphine (3 and 6mg/kg) after the successful training phase had an amnestic effect and induced memory consolidation impairment. ⋯ Also, the results showed that the injection of bicuculline, a GABA-A receptor antagonist (0.3-0.5µg/rat) or NMDA (0.005-0.02µg/rat) into the ventral tegmental area reversed ACPA-induced potentiation of morphine response and improved memory consolidation. It should be considered that the injection of ACPA into the basolateral amygdala and the injection of bicuculline or NMDA into the ventral tegmental area alone could not affect memory consolidation. Taken together, it seems that there is a functional interaction between the basolateral amygdala endocannabinoid system and the ventral tegmental area GABAergic- or glutamatergic neurotransmission in the modulation of morphine-induced memory consolidation impairment.
-
The molecular sensor of innocuous (painless) cold sensation is well-established to be transient receptor potential cation channel, subfamily M, member 8 (TRPM8). However, the role of transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). ⋯ The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking KV channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons.
-
As maternal treatment with magnesium sulfate (MG) may protect the fetal brain, we sought to assess the inflammation associated neuroprotective potential of MG and its association to interleukin 1β (IL-1β). ⋯ Intrauterine fetal exposure to maternal inflammation and pro-inflammatory cytokines is associated with adverse offspring neurological outcomes. Although its precise mechanism is not elucidated, magnesium sulfate (MG) is commonly used as neuroprotection for white matter brain injuries in preterm fetuses. A proposed mechanism involves the ability of MG to reduce pro-inflammatory cytokine levels. In the current study, we used a rat model of LPS-induced maternal inflammation to investigate the short-term effect of MG on fetal brain IL-1β levels, and its long-term neuroprotective effect on the offspring brain by using MRI. We demonstrated that maternal administration of MG can prevent long-term neonatal brain injury but, since no decrease was observed in fetal brain IL-1β levels, the neuro-protective mechanism of MG is not mediated by inhibition of IL-1β production.