Neuroscience
-
Neuroscientific research has made a concerted effort to determine cortical localization using various functional imaging techniques. This approach has undoubtedly yielded important novel anatomical knowledge, albeit at times contradictory, regarding the structural organization of the vestibular cortex. Unfortunately however, this knowledge has not translated to our understanding regarding how neural mechanisms control vestibular function. ⋯ Contrastingly, in the second half of this review, I present previous findings that show how disrupting interhemispheric interactions can modulate the brainstem-mediated vestibular-ocular reflex (VOR). I conclude by speculating why interhemispheric competition induces correlated biases at the cortical and brainstem level respectively. Specifically, I propose that brainstem-mediated vestibulo-spatial and vestibulo-temporal transformations, in addition to coding for head displacement, underpin a generalized cortical magnitude estimation system which the CNS uses to construct dynamic spatio-temporal maps of the physical world, in-turn ensuring spatial orientation.
-
Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. ⋯ Firstly, we showed a direct relationship between IGF-1/IGF-1R expression, presynaptic function (synaptophysin) and neurotransmitter activity in stress and PET. Secondly, we identified the possible role of CaMKIIα in post-synaptic function and regulation of small ion conductance channels. Lastly, we highlighted some of the possible links between IGF1/IGF-1R/CaMKIIα, the expression of DAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET.
-
Predatory open access is a controversial publishing business model that exploits the open-access system by charging publication fees in the absence of transparent editorial services. The credibility of academic publishing is now seriously threatened by predatory journals, whose articles are accorded real citations and thus contaminate the genuine scientific records of legitimate journals. This is of particular concern for public health since clinical practice relies on the findings generated by scholarly articles. ⋯ Although calling themselves "open-access", none of the journals retrieved was listed in the Directory of Open Access Journals. However, 14.9-24.7% of them were found to be indexed in PubMed and PubMed Central, which raises concerns on the criteria for inclusion of journals and publishers imposed by these popular databases. Scholars in the neurosciences are advised to use all the available tools to recognize predatory practices and avoid the downsides of predatory journals.
-
Chromatin regulation, in particular ATP-dependent chromatin remodelers, have previously been shown to be important in the regulation of reward-related behaviors in animal models of mental illnesses. Here we demonstrate that BAZ1A, an accessory subunit of the ISWI family of chromatin remodeling complexes, is downregulated in the nucleus accumbens (NAc) of mice exposed repeatedly to cocaine and of cocaine-addicted humans. ⋯ Furthermore, we investigate nucleosome repositioning genome-wide by conducting chromatin immunoprecipitation (ChIP)-sequencing for total H3 in NAc of control mice and after repeated cocaine administration, and find extensive nucleosome occupancy and shift changes across the genome in response to cocaine exposure. These findings implicate BAZ1A in molecular and behavioral plasticity to cocaine and offer new insight into the pathophysiology of cocaine addiction.
-
To understand the behavioral consequences of intermittent anticipatory stress resulting from threats without accompanying physiological challenges, we developed a semi-naturalistic rodent housing and foraging environment that can include threats that are unpredictable in timing. Behavior is automatically recorded while rats forage for food or water. Over three weeks, the threats have been shown to elicit risk assessment behaviors, increase defensive burying and increase adrenal gland weight. ⋯ There was an increase in COX activity in the hypothalamic premammillary dorsal nucleus (PMD) and lateral septum (LS), whereas a decrease was observed in the periaqueductal gray (PAG) and CA3 region of the hippocampus. There were no significant differences in the anterior cingulate cortex, prefrontal cortex, striatum or motor cortex. The sites with changes in metabolic capacity are candidates for the sites of plasticity that may underlie the behavioral adaptations to intermittent threats.