Neuroscience
-
Comparative Study
Comparison of the induction of c-fos-eGFP and Fos protein in the rat spinal cord and hypothalamus resulting from subcutaneous capsaicin or formalin injection.
We evaluated whether a c-fos-enhanced green fluorescent protein (eGFP) transgenic rat line, which expresses the c-fos and eGFP fusion gene, can be useful for the study of nociceptive pathways and processing. Capsaicin solution (15%) or formalin (5%) was subcutaneously injected bilaterally into the hind paws (100μL per each paw) of adult male c-fos-eGFP transgenic or wild-type rats. Control rats were injected with ethanol or physiological saline respectively. ⋯ Following capsaicin or formalin treatment, eGFP was maximally expressed at 6h in the spinal cord and 3h in the PVN and SON, whereas, Fos-LI was maximally expressed at 1.5h in all the regions we analyzed. Induction of eGFP in the OXT neurons was observed after capsaicin or formalin treatment, while Fos-LI in the OXT neurons was observed only after formalin treatment. These results demonstrate that the peak induction of c-fos-eGFP following exposure to acute nociceptive stimuli was delayed by around 1.5-4.5h, but more sensitive than endogenous Fos, suggesting that the c-fos-eGFP rat line can be useful for the study of nociceptive pathways and processing.
-
The thalamus is one of the most commonly affected brain regions in preterm infants, particularly in infants with white matter lesions (WML). The aim of this paper is to explore the development and alterations of the functional thalamocortical connectivity in preterm infants with and without punctate white matter lesions (PWMLs) during the period before term equivalent age (TEA). In this study, twenty-two normal preterm infants (NP), twenty-two preterm infants with PWMLs and thirty-one full-term control infants (FT) were enrolled. ⋯ Both preterm groups exhibited prominent development in thalamo-SA and thalamo-SM connectivity during this period. Compared with NP infants, PWML infants demonstrated increased connectivity in the parietal area in thalamo-SA connectivity but no significant differences in thalamo-SM connectivity. Our results reveal that compared with NP infants, PWML infants exhibit slightly altered thalamo-SA connectivity, and this alteration is deduced to be functional compensations for inefficient thalamocortical processing due to PWMLs.
-
Goal-oriented arm movements are characterized by a balance between speed and accuracy. The relation between speed and accuracy has been formalized by Fitts' law and predicts a linear increase in movement duration with task constraints. Up to now this relation has been investigated on a short-time scale only, that is during a single experimental session, although chronobiological studies report that the motor system is shaped by circadian rhythms. ⋯ While Fitts' law was held for the whole sessions of the day, the slope of the relation between movement duration and task difficulty expressed a clear modulation, with the lowest values in the afternoon. This variation of the speed-accuracy trade-off in executed and mental movements suggests that, beyond execution parameters, motor planning mechanisms are modulated during the day. Daily update of forward models is discussed as a potential mechanism.
-
Cerebral ischemia leads to astrocyte's activation and glial scar formation. Glial scar can inhibit axonal regeneration during the recovery phase. It has demonstrated that sevoflurane has neuroprotective effects against ischemic stroke, but its effects on ischemia-induced formation of astrogliosis and glial scar are unknown. ⋯ In order to confirm whether inhibition of cathepsin B could attenuate the formation of glial scar, we used cathepsin B inhibitor CA-074Me as a positive control. The results showed that inhibition of cathepsin B could decrease the expression of GFAP, neurocan and phosphacan. Taken together, sevoflurane postconditioning can attenuate astrogliosis and glial scar formation after ischemic stroke, associating with inhibition of the activation and release of lysosomal cathepsin B.
-
Glioblastoma (GBM) is a highly aggressive brain cancer with limited treatments and poor patient survival. GBM tumors are heterogeneous containing a complex mixture of dividing cells, differentiated cells, and cancer stem cells. It is unclear, however, how these different cell populations contribute to tumor growth or whether they exhibit differential responses to chemotherapy. ⋯ We also found a significant decrease in vimentin-positive cells, but not in Sox2 or GFAP-positive cells. However, the Sox2-positive cells significantly increased 5days after TMZ treatment. These data support that putative glioma cancer stem cells are more resistant to TMZ treatment and may contribute to tumor regrowth after chemotherapy.