Neuroscience
-
Nicotine is one of the most addictive substances known, targeting multiple memory systems, including the ventral and dorsal striatum. One form of neuroplasticity commonly associated with nicotine is dendrite remodeling. Nicotine-induced dendritic remodeling of ventral striatal medium spiny neurons (MSNs) is well-documented. ⋯ Analysis of these subpopulations revealed that DLS MSNs with more primary dendrites were selectively remodeled by chronic nicotine exposure and remodeling was specific to the distal-most portions of the dendritic arbor. Co-administration of the dopamine D1 receptor (D1R) antagonist SCH23390 completely reversed the selective effects of nicotine on DLS MSN dendrite morphology, supporting a causal role for dopamine signaling at D1 receptors in nicotine-induced dendrite restructuring. Considering the functional importance of the DLS in shaping and expressing habitual behavior, these data support a model in which nicotine induces persistent and selective changes in the circuit connectivity of the DLS that may promote and sustain addiction-related behavior.
-
Pain is a common complication of herpes zoster (HZ) infection which results from reactivation of a latent varicella zoster virus (VZV). A third of HZ patients' progress to a chronic pain state known as post herpetic neuralgia (PHN), and about a quarter of these patients' have orofacial pain. The mechanisms controlling the pain responses are not understood. ⋯ VZV-induced nociception was significantly decreased after administering CNO in male rats. Nociception significantly increased concomitant with increased thalamic c-fos expression after attenuating thalamic VGAT expression. These data establish that the lateral thalamus (posterior, ventral posteromedial, ventral posterolateral and/or reticular thalamic nucleus) controls VZV-induced nociception in the orofacial region, and that GABA in this region appears to reduce the response to VZV-induced nociception possibly by gating facial pain input.
-
Depression induced by stress is affected by sex, age and hormonal status of the animal and also by duration and type of the stressors. Moreover, higher prevalence of depression and comorbidities in women than men implies the need to include the sex variable in studies on animal models of depression. The present study was therefore initiated to evaluate the effect of sex and ovarian hormones on depression-like phenotypes in mice exposed to a 21-day Chronic Variable Mild Stress (CVMS) paradigm. ⋯ There was a significant decrease in the BDNF protein expression along with an increase in the mRNA expression of CRH, NR3C1, CART, and NPY in intact females, but not in the other two groups of mice. OVX females resembled males in behavioral and molecular responses to CVMS. 17β-Estradiol (E2) administration, not Progesterone (P4), to OVX female stress mice, mitigated despair and enhanced hedonic capacity with an increased expression of BDNF in PFC. This study strengthens the evidence for the beneficial effects of E2 administration in stress condition.
-
The aim of the present study was to examine the modification of postural symmetry during quiet standing using a sensorimotor adaptation paradigm. A group of neurologically typical adult participants performed a visually guided mediolateral (left-right) weight shifting task requiring precise adjustments in body orientation. ⋯ COP during quiet standing without visual feedback was examined prior to and immediately following the sensorimotor adaptation procedure, in order to observe whether compensatory adjustments in postural control resulting from the visual-feedback manipulation would transfer to the control of whole-body COP during quiet standing. Results showed that the sensorimotor adaptation procedure induced a small but reliable compensatory change in the stance of participants, resulting in a change in postural symmetry and control that was found to persist even after normal visual feedback was restored.
-
The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. ⋯ The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells.