Neuroscience
-
The response to a traumatic experience may be rapid recovery or development of psychopathology such as post-traumatic stress disorder (PTSD). Impaired extinction of fear memories is thought to contribute to the development of the persistent trauma memories and avoidance. The Wnt/β-catenin pathway and the endocannabinoid system appear to play significant roles in anxiety and depressive symptoms. ⋯ Exposure to shock and reminders resulted in attenuated levels of the endocannabinoid N-arachidonylethanolamine (AEA) in the NAc; the cannabinoid CB1/2 receptor agonist WIN55,212-2 (5µg/side) microinjected into the NAc facilitated extinction in shocked rats. Importantly, the facilitating effect of WIN55,212-2 on extinction was blocked by co-administration of sulindac in doses that downregulated β-catenin levels. Taken together, the results suggest that β-catenin in the NAc may serve as a protective buffer against the effects of severe stress, and that inhibiting this system in the NAc may prevent the therapeutic effects of cannabinoids against stress-related disorders.
-
The Aristaless-related homeobox gene (ARX) is indispensable for interneuron development. Patients with ARX polyalanine expansion mutations of the first two tracts (namely PA1 and PA2) suffer from intellectual disability of varying severity, with seizures a frequent comorbidity. The impact of PA1 and PA2 mutations on the brain development is unknown, hindering the search for therapeutic interventions. ⋯ Our data further demonstrated the pathogenic mechanism was robustly shared between PA1 and PA2 mutations, as previously reported including Arx protein reduction and overlapping transcriptome profiles within the developing mouse brains. Data from our study demonstrated that cortical calbindin interneuron development and migration is negatively affected by ARX polyalanine expansion mutations. Understanding the cellular pathogenesis contributing to disease manifestation is necessary to screen efficacy of potential therapeutic interventions.
-
Multicenter Study
Disrupted white matter structural networks in healthy older adults APOE ε4 carriers - An International Multicenter DTI Study.
The ε4 allelic variant of the Apolipoprotein E gene (APOE ε4) is the best-established genetic risk factor for late-onset Alzheimer's disease (AD). White matter (WM) microstructural damages measured with Diffusion Tensor Imaging (DTI) represent an early sign of fiber tract disconnection in AD. We examined the impact of APOE ε4 on WM microstructure in elderly individuals from the multicenter European DTI Study on Dementia. ⋯ APOE ε4+, compared to APOE ε4- showed higher MD in the genu, right internal capsule, superior longitudinal fasciculus and corona radiate. Comparisons stratified by center supported the results obtained on the whole sample. These findings support previous evidence in monocentric studies indicating a modulatory role of APOE ɛ4 allele on WM microstructure in elderly individuals at risk for AD suggesting early vulnerability and/or reduced resilience of WM tracts involved in AD.
-
Executive control requires behavioral adaptation to environmental contingencies. In the stop signal task (SST), participants exhibit slower go trial reaction time (RT) following a stop trial, whether or not they successfully interrupt the motor response. In previous fMRI studies, we demonstrated activation of the right-hemispheric ventrolateral prefrontal cortex, in the area of inferior frontal gyrus, pars opercularis (IFGpo) and anterior insula (AI), during post-error slowing (PES). ⋯ We employed Granger causality mapping to identify areas that provide inputs each to the right IFGpo/AI and left IFC, and computed single-trial amplitude (STA) of stop trials of these input regions as well as the STA of post-stop trials of the right IFGpo/AI and left IFC. The STAs of the right inferior precentral sulcus and supplementary motor area (SMA) and right IFGpo/AI were positively correlated and the STAs of the left SMA and left IFC were positively correlated (slope>0, p's≤0.01, one-sample t test), linking regional responses during stop success and error trials to those during PSS and PES. These findings suggest distinct neural mechanisms to support PSS and PES.
-
Zinc-α2-glycoprotein (ZAG) is a 42-kDa protein encoded by the AZGP1 gene that is known as a lipid mobilizing factor and is highly homologous to major histocompatibility complex class I family molecules. Recently, transcriptomic research has shown that AZGP1 expression is reduced in the brain tissue of epilepsy patients. However, the cellular distribution and biological role of ZAG in the brain and epilepsy are unclear. ⋯ Co-IP identified direct binding between p-ERK, TGF-β1 and ZAG. ZAG was found to be synthesized in neurons, and both the AZGP1 mRNA and ZAG protein levels were decreased in epilepsy patients and rat models. The reduction in ZAG may participate in the pathogenesis and pathophysiology of epilepsy by interacting with p-ERK and TGF-β1, promoting inflammation, regulating the metabolism of ketone bodies, or affecting other epilepsy-related molecules.