Neuroscience
-
Stimulation as well as inhibition of GABAB (Gamma amino butyric acid) receptors has been reported to show beneficial effects in Alzheimer's disease (AD). Experimental evidences suggest that the use of GABAergic agents could influence learning and memory. The present study was designed to investigate the possible role of GABAB receptors in streptozotocin (STZ)-induced behavioral and biochemical abnormalities in rats. ⋯ CGP35348 restored cognitive functions and AChE activity in STZ-infused rats. The cognitive enhancement following CGP35348 may be due to its ability to restore cholinergic, serotonergic and dopaminergic function, and its antioxidant activity. Therefore, it would be safe to conclude that the pharmacological blockade of GABAB receptors would be therapeutic in the management of cognitive disorders such as Alzheimer's disease.
-
Dysfunction of thalamo-cortical networks involving particularly the thalamic reticular nucleus (TRN) is implicated in schizophrenia. In the neonatal ventral hippocampal lesion (NVHL), a heuristic animal model of schizophrenia, brain oscillation changes similar to those of schizophrenic patients have been reported. The aim of this study was to analyze the effects of short-term deep brain stimulation (DBS) in the thalamic reticular nucleus on electroencephalographic (EEG) activity in the NVHL. ⋯ Additionally, the power spectra of 0.5-100Hz and the coherence of 0.5-4.5 and 35-55Hz frequencies were modified by DBS-TRN. Our results suggest that DBS in the TRN may modify functional connectivity between different parts of the thalamo-cortical network. Additionally, our findings may suggest a beneficial effect of DBS-TRN on some preclinical aberrant oscillatory activities in a neurodevelopmental model of schizophrenia.
-
Since the discovery of intrinsic photosensitive retinal ganglion cell (ipRGC) was reported in 2002, many features specific to this cell type have been described. However, scare information is available on the retinographic components directly reflecting ipRGC activity. In this study, we identified the electroretinogram (microERG) that reflects the photoresponses by ipRGCs in ex vivo preparations of the mouse retina, in which classical photoreceptors (cones and rods) were ablated mechanically and photochemically. ⋯ The sensitivity of temporal frequency was high in microERG (at least 100Hz), as suggested by the study on melatonin suppression by flickering light in human subjects (Zelter et al., 2014). Melatonin secretion was suppressed by light via ipRGCs and the suprachiasmatic nucleus. These properties of the photoresponse indicate that microERG may reflect the functions of ipRGC as a luminance detector in the mouse retina.
-
Newly formed ectopic hair-cell-like cells (EHCLCs) induced by overexpression of atonal homolog 1 (Atoh1) in vitro were found to possess features of endogenous hair cells (HCs) in previous reports and in the present study. However, limited information is available regarding whether EHCLCs and native spiral ganglion neurons (SGNs) form afferent synapses, which are important for the restoration of hearing. In the current study, we focused on the afferent synaptogenesis between EHCLCs and SGN-derived dendrites. ⋯ In addition, we found that the presynaptic ribbon (CtBP2) formation in EHCLCs preceded neural innervation. Furthermore, CtBP2-positive puncta increased and then decreased in EHCLCs, similar to the changes observed in endogenous HCs in terms of their number and distribution. Our finding of the generation of cochlear afferent synapses between EHCLCs and original SGNs will lay the foundation for regenerative approaches to restoring hearing after hair cell loss.
-
It is not known whether, during the course of aging, changes occur in the motor strategies used by the CNS for lifting objects of different weights. Here, we analyzed the kinematics of object-lifting in two different healthy groups (young and elderly people) plus one well-known deafferented patient (GL). The task was to reach and lift onto a shelf an opaque cylindrical object with changing weight. ⋯ It appears that, depending on age and on available proprioceptive information, the CNS uses different strategies of lifting. We suggest that elder people tend to optimize their feedforward control in order to compensate for less functional afferent feedback, perhaps to optimize movement time and energy expenditure at the expense of high precision. In the case of complete loss of proprioceptive input, however, compensation follows a different strategy as suggested by GL's behavior who moved more slowly compared to both our younger and older participants.