Neuroscience
-
The antinociceptive action of botulinum toxin type A (BoNT/A) has been demonstrated in behavioral animal studies and clinical settings. It was shown that this effect is associated with toxin activity in CNS, however, the mechanism is not fully understood. Substance P (SP) is one of the dominant neurotransmitters in primary afferent neurons transmitting pain and itch. ⋯ After peripheral toxin injection, cleaved SNAP-25 occurred in lumbar dorsal horn in all animal genotypes. BoNT/A antinociceptive activity is absent in animals lacking the SP and neurokinin 1 receptor encoding genes, in spite of presence of toxin's enzymatic activity in central sensory regions. Thus, we conclude that the integrity of SP-ergic system is necessary for the antinociceptive activity of BoNT/A.
-
An intriguing feature of nervous system development in most animal species is that the initial number of generated neurons is higher than the number of neurons incorporated into mature circuits. A substantial portion of neurons is indeed eliminated via apoptosis during a short time window - in rodents the first two postnatal weeks. ⋯ In postnatal rodent neocortex, the peak of apoptosis coincides with the occurrence of spontaneous, synchronous activity patterns. In this article, we review recent results that demonstrate the important role of electrical activity for neuronal survival in the neocortex, describe the role of Ca2+ and neurotrophic factors in translating electrical activity into pro-survival signals, and finally discuss the clinical impact of the tight relation between electrical activity and neuronal survival versus apoptosis.
-
Parkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs) in dopaminergic neurons. α-Synuclein (α-syn), a major protein component of LBs, is known to regulate synaptic plasticity, with a crucial role in memory and motor function in the central nervous system. Levodopa (L-3,4-dihydroxyphenylalanine; also known as L-DOPA) is considered the most effective medication for controlling the symptoms of PD. However, it is unclear whether L-DOPA improves the neuropathology of PD. ⋯ Our data showed that L-DOPA could attenuate ER stress markers, including the levels of activating transcription factor 4 (ATF4), C/EBPhomologous protein expression (CHOP), immunoglobulin-heavy-chain-binding protein (BiP), sliced X-box-binding protein 1 (XBP-1), and reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling through dopamine receptor D2 (DRD2) in SH-SY5Y neuronal cells under α-syn-induced toxicity. In conclusion, we suggest that L-DOPA may attenuate the neuropathology of PD by regulating signaling related to DRD2 in neuronal cells under α-syn-induced toxicity. Our study, therefore, indicates an additional role for L-DOPA in the treatment of PD.
-
Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b+) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b+ RdV neurons is still unclear. ⋯ The majority of Phox2b+ (35/46) and half of the Phox2b- neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b+ (5/12) and Phox2b- RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b+ RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b- RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication.