Neuroscience
-
The superior temporal gyrus (STG) is involved in speech recognition against informational masking under cocktail-party-listening conditions. Compared to healthy listeners, people with schizophrenia perform worse in speech recognition under informational speech-on-speech masking conditions. It is not clear whether the schizophrenia-related vulnerability to informational masking is associated with certain changes in FC of the STG with some critical brain regions. ⋯ The results showed that in healthy participants, but not participants with schizophrenia, the contrast of either the PSS or PSC condition against the masker-only condition induced an enhancement of functional connectivity (FC) of the STG with the left superior parietal lobule and the right precuneus. Compared to healthy participants, participants with schizophrenia showed declined FC of the STG with the bilateral precuneus, right SPL, and right supplementary motor area. Thus, FC of the STG with the parietal areas is normally involved in speech listening against informational masking under either the PSS or PSC conditions, and declined FC of the STG in people with schizophrenia with the parietal areas may be associated with the increased vulnerability to informational masking.
-
The plasticity of nervous systems allows animals to quickly adapt to a changing environment. In particular, seasonal plasticity of brain structure and behavior is often critical to survival or mating in seasonal climates. Songbirds provide striking examples of seasonal changes in neural circuits and vocal behavior and have emerged as a leading model for adult brain plasticity. ⋯ On the contrary, lesions did not affect singing behavior during the breeding season. Our results therefore indicate that the BG-forebrain pathway introduces acoustic and syntactic variability in song when canaries resume singing in early fall. We propose that BG-forebrain circuits actively participate in seasonal plasticity by injecting variability in behavior during non-breeding season.
-
The role of Celsr3 in the development of central somatosensory projections from dorsal root ganglia.
Dorsal root ganglion (DRG) neurons receive peripheral somatosensory information and send orderly projections to second-order relay nuclei in the spinal cord and in the brainstem. Atypical cadherin Celsr3 is known to play a critical role in wiring of several central and peripheral axons. Although Celsr3 mRNA is heavily expressed in DRG neurons, its role in the development of somatosensory projections remains unexplored. ⋯ Furthermore, more Pavalbumin-positive fibers invaded the gray matter and made more contacts with spinal motor neurons in mutant than in control samples. Behavioral analysis showed that mutant animals were less sensitive to pain and more sensitive to mechanical stimulation than controls. In conclusion, Celsr3 is dispensable for the patterning of central DRG projections, but it regulates for the fine mapping of sensory fibers in the gray matter, which is important for somatosensory processing.
-
Aberrations in intracellular calcium (Ca2+) have been well established within amyotrophic lateral sclerosis (ALS), a severe motor neuron disease. Intracellular Ca2+ concentration is controlled in part through the endoplasmic reticulum (ER) mitochondria Ca2+ cycle (ERMCC). The ER supplies Ca2+ to the mitochondria at close contacts between the two organelles, i.e. the mitochondria-associated ER membranes (MAMs). ⋯ PRE-084 (another Sig1R agonist) did not exert any significant effects on cytosolic Ca2+. Both Sig1R expression and functionality were altered by the G93A mutation, indicating the centrality of Sig1R in ALS pathology. Here, we showed that intracellular Ca2+ shuttling can be manipulated by Sig1R activation, thus demonstrating the value of using the pharmacological manipulation of Sig1R to understand Ca2+ homeostasis.
-
Social experiences in adolescence are essential for displaying context-appropriate social behaviors in adulthood. We previously found that adult male rats that underwent social instability stress (SS) in adolescence had reduced social interactions with unfamiliar peers compared with non-stressed controls (CTL). Here we determined whether SS altered social recognition and social reward and brain oxytocin and vasopressin receptor density in adolescence. ⋯ Finally, oxytocin receptor binding density was higher in the dorsal lateral septum and nucleus accumbens shell in SS rats compared with CTL rats (p=0.02, p=0.01, respectively). No effect of SS was found for vasopressin 1a receptor binding density in any of the brain regions analyzed. We discuss the extent to which the differences in social behavior exhibited after social instability in adolescence involve changes in social salience and social competency, and the possibility that changes in oxytocin signaling in the brain underlie the differences in social behavior.