Neuroscience
-
Motor actions can be released much sooner than normal when the go-signal is of very high intensity (>100 dBa). Although statistical evidence from individual studies has been mixed, it has been assumed that sternocleidomastoid (SCM) muscle activity could be used to distinguish between two neural circuits involved in movement triggering. We summarized meta-analytically the available evidence for this hypothesis, comparing the difference in premotor reaction time (RT) of actions where SCM activity was elicited (SCM+ trials) by loud acoustic stimuli against trials in which it was absent (SCM- trials). ⋯ Our mini meta-analysis showed that premotor RTs are faster in SCM+ than in SCM- trials, but the effect can be confounded by the variability of the foreperiods employed. We present experimental data showing that foreperiod predictability can induce differences in RT that would be of similar size to those attributed to the activation of different neurophysiological pathways to trigger prepared actions. We discuss plausible physiological mechanisms that would explain differences in premotor RTs between SCM+ and SCM- trials.
-
Gait initiation can vary as a function of the available and engaged attentional resources. Conflict resolution can disrupt movement preparation and lead to "errors" in motor programming. These "errors" are physiologically useful by enabling us to adapt our motor behavior to situations with conflicting information. ⋯ The ERP was similar in both conditions, except that the Ne and P300 peak latencies were longer for APA errors. Motor programming errors during gait initiation were characterized by longer, less intense low-beta-band ERD over the sensorimotor cortex and alpha ERS followed by stronger alpha ERD during errors. APA errors were associated with a specific alpha/beta oscillation profile over the sensorimotor cortex; these beta oscillations might be sensitive markers of non-conscious motor error and correction monitoring.
-
Microglia, the brain resident immune cells, play prominent roles in immune surveillance, tissue repair and neural regeneration. Despite these pro-survival actions, the relevance of these cells in the progression of several neuropathologies has been established. In the context of manganese (Mn) overexposure, it has been proposed that microglial activation contributes to enhance the neurotoxicity. ⋯ Altogether these events point to lysosomes as players in the execution of RN. In summary, our results suggest that microglial cells could be direct targets of Mn2+ damage. In this scenario, Mn2+ triggers cell death involving RN pathways.
-
Cerebral palsy is an irreversible movement disorder resulting from cerebral damage sustained during prenatal or neonatal brain development. As survival outcomes for preterm injury improve, there is increasing need to model ischemic injury at earlier neonatal time-points to better understand the subsequent pathological consequences. ⋯ These include a robust motor deficit sustained into adulthood and recapitulation of hallmark features of preterm human brain injury, including atrophy of subcortical white matter and periventricular fiber bundles. Compared to procedures involving carotid artery manipulation and periods of hypoxia, the ET-1 ischemia model represents a rapid and technically simplified model more amenable to larger cohorts and with the potential to direct the locus of ischemic damage to specific brain areas.
-
Chronic psychogenic stress can increase neuronal calcium influx and generate the intracellular accumulation of oxidative (ROS) and nitrosative (RNS) reactive species, disrupting synaptic transmission in the brain. These molecules impair the Na,K-ATPase (NKA) activity, whose malfunction has been related to neuropsychiatric disorders, including anxiety, depression, schizophrenia, and neurodegenerative diseases. In this study, we assessed how 14 days of restraint stress in rats affect NKA activity via oxidative/nitrosative damage in the frontal cortex (FCx), a crucial region for emotional and cognitive control. ⋯ No cellular death or neurodegeneration was observed in the FCx of S14 + 1d animals. Pharmacological inhibition of iNOS or COX-2 before each stress session prevented lipid peroxidation and the α2,3-NKA activity loss. Our results show that repeated restraint exposure for 14 days decreases the activity of α2,3-NKA in FCx 24 h after the last stress, an effect associated with augmented inflammatory response and oxidative and nitrosative damage and suggest new pathophysiological roles to neuroinflammation in neuropsychiatric diseases.