Neuroscience
-
Cognitive impairment (CI), a debilitating and pervasive feature of multiple sclerosis (MS), is correlated with hippocampal atrophy. Findings from postmortem MS hippocampi indicate that expression of genes involved in both excitatory and inhibitory neurotransmission are altered in MS, and although deficits in excitatory neurotransmission have been reported in the MS model experimental autoimmune encephalomyelitis (EAE), the functional consequence of altered inhibitory neurotransmission remains poorly understood. In this study, we used electrophysiological and biochemical techniques to examine inhibitory neurotransmission in the CA1 region of the hippocampus in EAE. ⋯ Although plasma membrane expression of the GABA transporter GAT-3 was decreased in the EAE hippocampus, an increased surface expression of α5 subunit-containing GABAA receptors appears to be primarily responsible for the increase in tonic inhibition during EAE. Enhanced tonic inhibition during EAE was associated with decreased CA1 pyramidal cell excitability and inhibition of α5 subunit-containing GABAA receptors with the negative allosteric modulator L-655,708 enhanced pyramidal cell excitability in EAE mice. Together, our results suggest that altered GABAergic neurotransmission may underlie deficits in hippocampus-dependent cognitive function in EAE and MS.
-
Individuals show marked variability in determining to be honest or deceptive in daily life. A large number of studies have investigated the neural substrates of deception; however, the brain networks contributing to the individual differences in deception remain unclear. In this study, we sought to address this issue by employing a machine-learning approach to predict individuals' deceptive propensity based on the topological properties of whole-brain resting-state functional connectivity (RSFC). ⋯ The machine-learning model sufficiently decoded individual differences in deception using three brain networks based on RSFC, including the executive controlling network (dorsolateral prefrontal cortex, middle frontal cortex, and orbitofrontal cortex), the social and mentalizing network (the temporal lobe, temporo-parietal junction, and inferior parietal lobule), and the reward network (putamen and thalamus). These networks have been found to form a signaling cognitive framework of deception by coding the mental states of others and the reward or values of deception or honesty, and integrating this information to make a final decision about being deceptive or honest. These findings suggest the potential of using RSFC as a task-independent neural trait for predicting deceptive propensity, and shed light on using machine-learning approaches in deception detection.
-
Alzheimer's disease is a chronic neurological ailment that seriously threatens human health and imposes a huge burden on families and the society at large. Emerging evidence suggests that neuroinflammation is an important pathological manifestation of neurodegenerative diseases, and currently considered a new research target. We previously found that artemisinin B from Artemisia annua Linn. has strong anti-inflammatory and immunological activities. ⋯ This study also showed that artemisinin B improved spatial memory in dementia mice in the water maze and step-through tests, and altered the pathological features and the levels of inflammatory cytokines in the hippocampus and the cortex. These results suggested that artemisinin B might inhibit neuroinflammation and exert neuroprotective effects on cognitive functions by modulating the TLR4-MyD88-NF-κB signaling pathway. This study provides direct evidence for the potential application of artemisinin B in the treatment of neuroinflammatory diseases.
-
The serotoninergic 5-HT2A receptor is involved in the mechanism of depression and antidepressant drugs action. Earlier we showed that striatal-enriched protein tyrosine phosphatase (STEP) inhibitor - 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153) affects both the brain serotoninergic system and the brain-derived neurotropic factor that are known to be involved in the psychopathology of depression. In the present study we investigated the effects of chronic TC-2153 administration on behavior in the standard battery of tests as well as the effects of acute and chronic TC-2153 treatment on the brain 5-HT2A receptors in mice. ⋯ Moreover, both acute and chronic TC-2153 administration inhibited the functional activity of 5-HT2A receptors estimated by the number of 2,5-dimethoxy-4-iodoamphetamine (DOI, agonist of 5-HT2A receptors)-induced head-twitches. TC-2153 treatment also attenuated the DOI-induced c-fos expression in cortical and hippocampal neurons and reduced the 5-HT2A receptor protein level in the hippocampus and frontal cortex, but not in the striatum. Taken together, our combined data demonstrate that the antidepressant effect of STEP inhibitor TC-2153 could be mediated by its inhibitory properties towards the 5-HT2A receptor-mediated signaling.