Neuroscience
-
Previously we described similarities and differences in the organization and molecular composition of an aggrecan based extracellular matrix (ECM) in three precerebellar nuclei, the inferior olive, the prepositus hypoglossi nucleus and the red nucleus of the rat associated with their specific cytoarchitecture, connection and function in the vestibular system. The aim of present study is to map the ECM pattern in a mesencephalic precerebellar nucleus, the pararubral area, which has a unique function among the precerebellar nuclei with its retinal connection and involvement in the circadian rhythm regulation. ⋯ Characteristic perineuronal nets (PNNs) were only recognizable with Wisteria floribunda agglutinin (WFA) and aggrecan staining around some of the medium-sized neurons, whereas the small cells were rarely surrounded by a weakly stained PNNs. The moderate expression of key molecules of PNN, the hyaluronan (HA) and HAPLN1 suggests that the lesser stability of ECM assembly around the pararubral neurons may allow quicker response to the modified neuronal activity and contributes to the high level of plasticity in the vestibular system.
-
Transient receptor potential vanilloid type 4 (TRPV4) channels are involved in astrocyte volume regulation; however, only limited data exist about its mechanism in astrocytes in situ. We performed middle cerebral artery occlusion in adult mice, where we found twice larger edema 1 day after the insult in trpv4-/- mice compared to the controls, which was quantified using magnetic resonance imaging. This result suggests disrupted volume regulation in the brain cells in trpv4-/- mice leading to increased edema formation. ⋯ In contrast to in vitro experiments, we found little evidence of the contribution of TRPV4 channels to volume regulation in astrocytes in situ in adult mice. Moreover, we only found a rare expression of TRPV4 channels in adult mouse astrocytes. Our data suggest that TRPV4 channels are not involved in astrocyte volume regulation in situ; however, they play a protective role during the ischemia-induced brain edema formation.
-
Emerging evidence suggests that hypoxia-inducible factors (specifically, HIF-1α) and Notch signaling are involved in epileptogenesis and that cross-coupling exists between HIF-1α and Notch signaling in other diseases, including tumors and ischemia. However, the exact molecular mechanisms by which HIF-1α and Notch signaling affect the development of epilepsy, especially regarding neurogenesis, remain unclear. ⋯ The immunoprecipitation data illustrated that HIF-1α activated Notch signaling by physically interacting with the Notch intracellular domain (NICD) in epilepsy. In conclusion, our results suggested that HIF-1α-Notch signaling enhanced neurogenesis in acute epilepsy and that neurogenesis during epileptogenesis was reduced once this pathway was blocked; thus, members of this pathway might be potential therapeutic targets for epilepsy.
-
Anxiety is considered an important protracted abstinence symptom that can aggravate craving and relapse risk in opioid addicts. Although the insular cortex (IC) has been reported to be a key brain region in mediating emotional and motivational alterations induced by drug consumption and withdrawal, the role of IC in anxiety related to protracted abstinence remains elusive. ⋯ Bilateral lesion of the medial IC, but not the anterior or posterior IC with ibotenic acid (IBO) alleviated the anxiety-like behavior. (3) Expression of Wnt7a in the medial IC was significantly increased after 28 days of withdrawal, and specific down-regulation of Wnt7a with AAV-shWnt7a also alleviated the anxiety-like behavior. The findings reveal the medial IC is involved in mediating anxiety-like behavior related to morphine protracted abstinence, in which Wnt7a plays a critical role.
-
The perirhinal cortex (PRH) is considered a crucial cortical area for familiarity memory and electrophysiological studies have reported the presence of visual familiarity encoding neurons in PRH. However, recent evidence has questioned the existence of these neurons. ⋯ However, the PRH showed no response modulation with respect to familiarity under a variety of different conditions or retention delays. These results indicate that the PRH does not contribute to familiarity/novelty encoding using passively exposed visual stimuli.