Neuroscience
-
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine (polyQ) tract in the ataxin-3 protein. To date, there is no effective therapy available to prevent progression of this disease. ⋯ Furthermore, experimental therapeutic strategies, including gene silencing or mutant protein clearance, mutant polyQ protein modification, stabilizing the native protein conformation, rescue of cellular dysfunction and neuromodulation to slow the progression of SCA3/MJD, have been developed. In this study, based on the current knowledge, I detail the clinical and experimental therapeutic strategies for treating SCA3/MJD, paying particular attention to drug discovery.
-
Alzheimer's disease (AD) and Parkinson's disease with dementia (PDD) are characterized by a different mnesic failure, particularly in memory cued recall. Although hippocampal involvement has been shown in both these diseases, it remains unknown whether a selective damage of specific subfields within the hippocampus may be responsible for the peculiar mnesic profile observed in AD and PDD. To explore this topic, we combined a multimodal 3 T-MRI hippocampal evaluation (whole-brain T1-weighted and diffusion tensor imaging) with a hippocampal-targeted neuropsychological assessment (Free and Cued Selective Reminding Test [FCSRT]) in 22 AD subjects, 18 PDD and 17 healthy controls. ⋯ Moreover, compared to controls, AD showed a reduction in almost all subfields, with a MD increase in the same regions, whereas PDD displayed a volume loss, less severe than AD, more evident in the CA2-3 and presubiculum subfields. Our study provides new evidence that hippocampal subregions had different vulnerability to damage related to AD and PDD. The combination of the in vivo analysis of hippocampal subfields with the FCSRT paradigm provided important insights into whether changes within specific hippocampal subfields are related to the different mnesic profile in AD and PDD patients.
-
Some meditation techniques teach the practitioner to achieve the state of mental silence. The aim of this study was to investigate brain regions that are associated with their volume and functional connectivity (FC) with the depth of mental silence in long-term practitioners of Sahaja Yoga Meditation. Twenty-three long-term practitioners of this meditation were scanned using Magnetic Resonance Imaging. ⋯ The capacity of long-term meditators to establish a durable state of mental silence inside an MRI scanner was associated with larger gray matter volume in a medial frontal region that is crucial for top-down cognitive, emotion and attention control. This is furthermore corroborated by increased FC of this region during the meditation-state with bilateral anterior insula/putamen, which are important for interoception, emotion, and attention regulation. The findings hence suggest that the depth of mental silence is associated with medial fronto-insular-striatal networks that are crucial for top-down attention and emotional control.
-
The basolateral amygdala (BLA) controls numerous behaviors, like anxiety and reward seeking, via the activity of glutamatergic principal neurons. These BLA neurons receive excitatory inputs primarily via two major anatomical pathways - the external capsule (EC), which contains afferents from lateral cortical structures, and the stria terminalis (ST), containing synapses from more midline brain structures. Chronic intermittent ethanol (CIE) exposure/withdrawal produces distinct alterations in these pathways. ⋯ These data suggest that presynaptic alteration at ST-BLA afferents is an early neuroadaptation during repeated ethanol exposures. And, the similar patterns of presynaptic-then-postsynaptic facilitation across the sexes suggest the former may be required for the latter. These cooperative interactions may contribute to the increased anxiety-like behavior that is observed following CIE-induced withdrawal and may provide novel therapeutic targets to reverse withdrawal-induced anxiety.
-
Despite the regenerative capacity of the olfactory bulb (OB), head trauma causes olfactory disturbances in up to 30% of patients. While models of olfactory nerve transection, olfactory receptor neuron (ORN) ablation, or direct OB impact have been used to examine OB recovery, these models are severe and not ideal for study of OB synaptic repair. We posited that a mild fluid percussion brain injury (mFPI), delivered over mid-dorsal cortex, would produce diffuse OB deafferentation without confounding pathology. ⋯ Robust 21 d postinjury upregulation of GAP-43 was consistent with the time course of ORN axon sprouting and synapse regeneration reported after more severe olfactory insult. Together, these findings define a cycle of synaptic degeneration and recovery at a site remote to non-contusive brain injury. We show that mFPI models diffuse ORN axon damage, useful for the study of time-dependent reactive synaptogenesis in the deafferented OB.