Neuroscience
-
The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. ⋯ In contrast, CB1BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations.
-
Following peripheral nerve injury (PNI), inflammatory cues impede repair. We have previously demonstrated that spinal cord matrix (SCM) proteins and hyaluronic acid (HA) nanofibers mitigate chondroitin sulfate proteoglycan (CSPG) inhibition and promote growth in peripheral neurons. In this study, we evaluated the effects of a characteristic CSPG, chondroitin sulfate A (CSA), SCM, and HA fibers on macrophages and Schwann cells (SCs). ⋯ Antibody arrays were used to measure relative levels of inflammatory cytokines released by the cells. The arrays confirmed that anti-inflammatory cytokines are released from the cells when cultured with our biomaterial cues and helped identify targets for future investigation including vascular endothelial growth factor (VEGF), interleukin (IL)-10, monocyte colony stimulating factor (M-CSF) from the macrophages, Agrin, ciliary neurotrophic factor (CNTF), tissue inhibitor metalloproteinases (TIMPs)-1 from SCs, and IL-2 from both cell types. In conclusion, these results suggest that our biomaterial cues have pro-regenerative effects on both cell types and if combined may trigger cells toward regenerative programs.
-
Alzheimer's disease (AD) is the leading cause of dementia worldwide. This pathological condition is characterized not only by Aβ and tau accumulation in the central nervous system (CNS), but also by inflammation, processes that can lead to neurodegeneration. ⋯ Furthermore, cholesterol-associated genes are frequently associated with AD. Here, we extensively reviewed the literature and, based on the existing evidences, we suggest inflammation as an important link between dyslipidemias and AD.
-
Mitochondria are key cellular organelles that play crucial roles in the energy production and regulation of cellular metabolism. Accumulating evidence suggests that mitochondrial activity can be modulated by nitric oxide (NO). As a key neurotransmitter in biologic systems, NO mediates the majority of its function through activation of the cyclic guanylyl cyclase (cGC) signaling pathway and S-nitrosylation of a variety of proteins involved in cellular functioning including those involved in mitochondrial biology. ⋯ In this review we highlight the possible mechanisms underlying the noxious effects of excess NO and RNS on mitochondrial function including (i) negative effects on electron transport chain (ETC); (ii) ONOO--mediated alteration in mitochondrial permeability transition; (iii) enhanced mitochondrial fragmentation and autophagy through S-nitrosylation of key proteins involved in this process such as dynamin-related protein 1 (DRP-1) and Parkin/PINK1 (protein phosphatase and tensin homolog-induced kinase 1) complex; (iv) alterations in the mitochondrial metabolic pathways including Krebs cycle, glycolysis, fatty acid metabolism, and urea cycle; and finally (v) mitochondrial ONOO--induced nuclear toxicity and subsequent release of apoptosis-inducing factor (AIF) from mitochondria, causing neuronal cell death. These proposed mechanisms highlight the multidimensional nature of NO and its signaling in the mitochondrial function. Understanding the mechanisms by which NO mediates mitochondrial (dys)function can provide new insights into the treatment of neurodegenerative diseases.
-
Comparative Study
Quantitative Comparison Of Vesicular Glutamate Transporters in rat Deep Cerebellar Nuclei.
The excitatory synapses of the rat deep cerebellar nuclei (DCN) were quantitatively analyzed by vesicular glutamate transporter 1 and 2 (vGluT1 and vGluT2) immunolabeling. We calculated the number and sizes of the labeled boutons and compared them between lateral/dentate nucleus (LN/DN), posterior interposed nucleus (PIN), anterior interposed nucleus (AIN), and medial nucleus (MN). The density of vGluT1+ boutons differs significantly within these nuclei. ⋯ The phylogenetically newer DCN (LN/DN and PIN) have a 39% higher density of vGluT1+ boutons than the phylogenetically older DCN (AIN and MN). The volume of vGluT1+ boutons does not differ between the DCN, however the average volume of vGluT2+ boutons is larger in MN. In summary, our current results confirm and extend our previous findings showing that the increase in dendritic and axonal wiring in phylogenetically newer DCN is associated with an increase in vGluT1+ bouton density.