Neuroscience
-
Collapsin Response Mediator Protein 2 (CRMP2) is an intracellular protein involved in axon and dendrite growth and specification. In this study, CRMP2 was identified in a conditioned media derived from degenerated sciatic nerves (CM). On cultured rat hippocampal neurons, acute extracellular application of CM or partially purified recombinant CRMP2 produced an increase in cytoplasmic calcium. ⋯ By using live-labeling of CRMP2, Ca2+ channel binding domain 3 (CBD3) peptide derived from CRMP2, and recombinant CRMP2, we demonstrated that that this effect was mediated by an action on the extracellular side of the NMDA receptor. This is the first report of an extracellular action of CRMP2. Prolonged exposure to extracellular CRMP2, may contribute to neuronal calcium dysregulation and neuronal damage.
-
The Dorsal Cochlear Nucleus (DCN) is a region which has been traditionally linked to the genesis of tinnitus, the constant perception of a phantom sound. Sodium salicylate, a COX-2 inhibitor, can induce tinnitus in high doses. Hyperactivity of DCN neurons is observed in several animal models of tinnitus, including salicylate-induced tinnitus. ⋯ This effect was not observed in the presence of AM251, an antagonist/inverse agonist of cannabinoid CB1 receptors, showing that it was dependent on EC release. Finally we demonstrated that incubation with salicylate potentiated the increase in intracellular calcium during the depolarization. Our results point to an increased inhibition of DCN inhibitory CW neuron during depolarizations, probably by an enhanced EC release during the depolarizations, which is potentially significant for DCN hyperactivity and tinnitus generation.
-
Development of tolerance is a well known pharmacological characteristic of opioids and a major clinical problem. In addition to the known neuronal mechanisms of opioid tolerance, activation of glia has emerged as a potentially significant new mechanism. We studied activation of microglia and astrocytes in morphine tolerance and opioid-induced hyperalgesia in rats using immunohistochemistry, flow cytometry and RNA sequencing in spinal- and supraspinal regions. ⋯ No evidence for the activation of glia in the brain was seen. Our results suggest that glial activation associated with opioid tolerance and opioid-induced hyperalgesia occurs mainly at the spinal level. The transcriptome data suggest that the microglial activation pattern after chronic morphine treatment has similarities with that of neuropathic pain.
-
Chronic Mountain Sickness (CMS) occurs in high-altitude residents with major neurological symptoms such as migraine headaches, dizziness and cognitive deficits. Recent work demonstrated that highlanders have increased intracellular pH (pHi) in their brain cells, perhaps for the sake of adaptation to hypoxemia and help to facilitate glycolysis, DNA synthesis, and cell cycle progression. Since there are well adapted (non-CMS) and maladapted (CMS) high-altitude dwellers, it is not clear whether pHi is differently regulated in these two high-altitude populations. ⋯ In addition, the acid extrusion following an acid loading is faster and the pHi dependence of H+ flux rate becomes steeper in CMS astrocytes. Furthermore, the Na+ dependency of ss pHi is stronger in CMS astrocytes and the Na+/H+ exchanger (NHE) inhibitors blunted the acid extrusion in both CMS and non-CMS astrocytes. We conclude that (a) NHE contributes to the ss pHi stabilization and mediates active acid extrusion during the cytosolic acidosis in highlanders; (b) acid extrusion becomes less pHi sensitive in non-CMS (versus CMS) astrocytes which may prevent NHE from over-activated in the hypoxia-induced intracellular acidosis and render the non-CMS astrocytes more resistant to hypoxemia challenges.