Neuroscience
-
Neurofeedback training is a form of brain training in which information about a neural measure is fed back to the trainee who is instructed to increase or decrease the value of that particular measure. This paper focuses on electroencephalography (EEG) neurofeedback in which the neural measures of interest are the brain oscillations. To date, the neural mechanisms that underlie successful neurofeedback training are still unexplained. ⋯ The simulation successfully learns to increase its peak alpha frequency and demonstrates the influence of threshold setting - the threshold that determines whether positive or negative feedback is provided. Analyses of the model suggest that neurofeedback can be likened to a search process that uses importance sampling to estimate the posterior probability distribution over striatal representational space, with each representation being associated with a distribution of values of the target EEG band. The model provides an important proof of concept to address pertinent methodological questions about how to understand and improve EEG neurofeedback success.
-
Review
Using Recent BCI Literature to Deepen our Understanding of Clinical Neurofeedback: A Short Review.
In their recent paper, Alkoby et al. (2017) provide the readership with an extensive and very insightful review of the factors influencing NeuroFeedback (NF) performance. These factors are drawn from both the NF literature and the Brain-Computer Interface (BCI) literature. Our short review aims to complement Alkoby et al.'s review by reporting recent additions to the BCI literature. ⋯ Since BCIs and NF share a common goal (i.e., learning to modulate specific neurophysiological patterns), similar cognitive and neurophysiological processes are likely to be involved during the training process. Thus, the literature on BCI training may help (1) to deepen our understanding of neurofeedback training processes and (2) to understand the variables that influence the clinical efficacy of NF. This may help to properly assess and/or control the influence of these variables during randomized controlled trials.
-
Drug addiction is a major health problem worldwide. Recent neuroimaging studies have shed light into the underlying mechanisms of drug addiction as well as its consequences to the human brain. The most vulnerable, to heroin addiction, brain regions have been reported to be specific prefrontal, parietal, occipital, and temporal regions, as well as, some subcortical regions. ⋯ In the current manuscript, we comprehensively review and discuss existing resting-state neuroimaging findings classified into three overlapping and interconnected groups: functional connectivity alterations, structural deficits and abnormal topological properties. Moreover, behavioral traits of heroin-addicted individuals as well as the limitations of the currently available studies are also reviewed. Finally, in need of a contemporary therapy a multimodal therapeutic approach is suggested using classical treatment practices along with current neurotechonologies, such as neurofeedback and goal-oriented video-games.
-
Feedback-driven learning, observed across phylogeny and of clear adaptive value, is frequently operationalized in simple operant conditioning paradigms, but it can be much more complex, driven by abstract representations of success and failure. This study investigates the neural processes involved in processing success and failure during feedback learning, which are not well understood. Data analyzed were acquired during a multisession neurofeedback experiment in which ten participants were presented with, and instructed to modulate, the activity of their orbitofrontal cortex with the aim of decreasing their anxiety. ⋯ Neurofeedback signals of failure correlated early during learning with deactivation in the precuneus/posterior cingulate and neurofeedback signals of success correlated later during learning with deactivation in the medial prefrontal/anterior cingulate cortex. The intensity of the latter deactivations predicted the efficacy of the neurofeedback intervention in the reduction of anxiety. These findings indicate a role for regulation of the default mode network during feedback learning, and suggest a higher sensitivity to signals of failure during the early feedback learning and to signals of success subsequently.
-
It is recognized that lower electroencephalography (EEG) frequencies correspond to distributed brain activity over larger spatial regions than higher frequencies and are associated with coordination. In motor processes it has been suggested that this is not always the case. Our objective was to explore this contradiction. ⋯ Comparing the models we observed lower CPL for both rhythms, lower CC in alpha and higher CC in beta when the number of ROIs increased. Also, denser networks with higher SW were correlated with higher number of ROIs. We propose a non-exclusive model where alpha rhythm uses greater wiring costs to engage in local information progression while beta rhythm coordinates the neurophysiological processes in sensorimotor tasks.