Neuroscience
-
Impairment in fine hand motor dexterity is well established in older people, yet little is known, about the impaired perception of hand movement in the elderly. Only an age-related increase in movement detection threshold has been reported. Perception of hand movements relies on multiple sensory information, including touch and muscle proprioception. ⋯ The present results show that muscle proprioception and touch are both functionally affected in kinesthesia after 65 years old, with a more pronounced alteration for muscle proprioception. This alteration in discriminative ability is likely due to impairment in the accurate encoding of the kinematic properties of hand movements. The possible central vs peripheral origin of these perceptive-motor changes with aging is discussed.
-
Following training in a difficult olfactory-discrimination (OD) task rats acquire the capability to perform the task easily, with little effort. This new acquired skill, of 'learning how to learn' is termed 'rule learning'. At the single-cell level, rule learning is manifested in long-term enhancement of intrinsic neuronal excitability of piriform cortex (PC) pyramidal neurons, and in excitatory synaptic connections between these neurons to maintain cortical stability, such long-lasting increase in excitability must be accompanied by paralleled increase in inhibitory processes that would prevent hyper-excitable activation. ⋯ At the molecular level, such rule-learning-relevant synaptic strengthening is mediated by doubling the conductance of synaptic channels, but not their numbers. This post synaptic process is controlled by a whole-cell mechanism via particular second messenger systems. This whole-cell mechanism enables memory amplification when required and memory extinction when not relevant.
-
The cellular mechanisms by which LC neurons respond to hypercapnia are usually attributed to an "accelerator" whereby hypercapnic acidosis causes an inhibition of K+ channels or activation of Na+ and Ca+2 channels to depolarize CO2-sensitive neurons. Nevertheless, it is still unknown if this "accelerator" mechanism could be controlled by a brake phenomenon. Whole-cell patch clamping, fluorescence imaging microscopy and plethysmography were used to study the chemosensitive response of the LC neurons. ⋯ Inhibition of BK channels in LC neurons by bilateral injections of paxilline into the LC results in a significant increase in the hypercapnic ventilatory response of adult rats. Our findings indicate that a BK channel-based braking system helps to determine the chemosensitive respiratory drive of LC neurons and contributes to the hypercapnic ventilatory response. Perhaps, abnormalities of this braking system could result in hypercapnia-induced respiratory disorders and panic responses.
-
An understudied symptom of the genetic disorder Neurofibromatosis type 1 (NF1) is chronic idiopathic pain. We used targeted editing of Nf1 in rats to provide direct evidence of a causal relationship between neurofibromin, the protein product of the Nf1 gene, and pain responses. Our study data identified a protein-interaction network with collapsin response meditator protein 2 (CRMP2) as a node and neurofibromin, syntaxin 1A, and the N-type voltage-gated calcium (CaV2.2) channel as interaction edges. ⋯ The data presented here shows that disrupting the CRMP2-neurofibromin interface is sufficient to reverse the dysregulations of voltage-gated ion channels and neurotransmitter release elicited by Nf1 gene editing. As a consequence of these effects, the CNRP1 peptide reversed hyperalgesia to thermal stimulation of the hindpaw observed in Nf1-edited rats. Our findings support future pharmacological targeting of the CRMP2/neurofibromin interface for NF1-related pain relief.
-
Focal administration of pharmacological agents during in vivo recordings is a useful technique to study the functional properties of neural microcircuits. However, the lack of visual control makes this task difficult and inaccurate, especially when targeting small and deep regions where spillover to neighboring regions is likely to occur. An additional problem with recording stability arises when combining focal drug administration with in vivo intracellular recordings, which are highly sensitive to mechanical vibrations. ⋯ We applied tetrodotoxin (TTX 10 µM) during whole-cell recordings in the striatum, while simultaneously obtaining extracellular recordings in S1 and M1. The focal application of TTX in the striatum blocked Up states in the recorded striatal neurons, without affecting the cortical activity. We also describe two different approaches for precisely releasing the drugs without unwanted leakage along the pipette approach trajectory.