Neuroscience
-
Physical exercise can improve morphological outcomes after ischemic stroke and ameliorate irradiation-induced reduction of hippocampal neurogenesis in rodents, but the mechanisms underlying these effects remain largely unknown. The transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is considered to be one of the central factors responsible for exercise-induced benefits in skeletal muscle, including the release of neurotrophic factors into the circulation. In order to test if PGC-1α overexpression in skeletal muscle could simulate the exercise-induced effects on recovery after cranial irradiation and stroke, we used male adult transgenic mice overexpressing murine PGC-1α under the control of muscle creatinine kinase promoter and subjected them to either whole brain irradiation at a dose of 4 Gy or photothrombotic stroke to the sensory motor cortex. ⋯ No difference could be detected in the number of migrating neural progenitor cells from the subventricular zone to the lesioned neocortex or in vascular density of the contralateral neocortex in comparison to wildtype animals. We conclude that forced muscular overexpression of PGC-1α does not have a beneficial effect on hippocampal neurogenesis after irradiation, but rather a detrimental effect on the infarct volume after stroke in mice. This suggests that artificial muscle activation through the PGC-1α pathway is not sufficient to mimic exercise-induced recovery after cranial irradiation and stroke.
-
Intimate structural and functional relationships between gap junctions and adherens junctions have been demonstrated in peripheral tissues, but have not been thoroughly examined in the central nervous system, where adherens junctions are often found in close proximity to neuronal gap junctions. Here, we used immunofluorescence approaches to document the localization of various protein components of adherens junctions in relation to those that we have previously reported to occur at electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36). The adherens junction constituents N-cadherin and nectin-1 were frequently found to localize near or overlap with Cx36-containing gap junctions in several brain regions examined. ⋯ The deployment of the protein constituents of these junctions was especially striking at somatic contacts between primary afferent neurons in the mesencephalic trigeminal nucleus (MesV), where the structural components of adherens junctions appeared to be maintained in connexin36 null mice. These results support emerging views concerning the multi-molecular composition of electrical synapses and raise possibilities for various structural and functional protein-protein interactions at what now can be considered the adherens junction-neuronal gap junction complex. Further, the results point to intracellular signaling pathways that could potentially contribute to the assembly, maintenance and turnover of this complex, as well as to the dynamic nature of neuronal communication at electrical synapses.