Neuroscience
-
Although bone is continually being remodeled and ultimately declines with aging, little is known whether similar changes occur in the sensory and sympathetic nerve fibers that innervate bone. Here, immunohistochemistry and confocal microscopy were used to examine changes in the sensory and sympathetic nerve fibers that innervate the young (10 days post-partum), adult (3 months) and aging (24 months) C57Bl/6 mouse femur. In all three ages examined, the periosteum was the most densely innervated bone compartment. ⋯ In cortical bone, sensory and sympathetic nerve fibers are largely confined to vascularized Haversian canals and while there is no significant decline in the density of sensory fibers, there was a 75% reduction in sympathetic nerve fibers in the aging vs. adult cortical bone. In contrast, in the bone marrow the overall density/unit area of both sensory and sympathetic nerve fibers appeared to remain largely unchanged across the lifespan. The preferential preservation of sensory nerve fibers suggests that even as bone itself undergoes a marked decline with age, the nociceptors that detect injury and signal skeletal pain remain relatively intact.
-
Downregulation of the potassium chloride cotransporter type 2 (KCC2) after a spinal cord injury (SCI) disinhibits motoneurons and dorsal horn interneurons causing spasticity and neuropathic pain, respectively. We showed recently (Bos et al., 2013) that specific activation of 5-HT2A receptors by TCB-2 [(4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide] upregulates KCC2 function, restores motoneuronal inhibition and reduces SCI-induced spasticity. Here, we tested the potential analgesic effect of TCB-2 on central (thoracic hemisection) and peripheral [spared nerve injury (SNI)] neuropathic pain. ⋯ This analgesic effect was associated with an increase in dorsal horn membrane KCC2 expression and was prevented by pharmacological blockade of KCC2 with an intrathecal injection of DIOA [(dihydroindenyl)oxy]alkanoic acid]. In contrast, the SNI-induced neuropathic pain was not attenuated by TCB-2 although there was a slight increase of membrane KCC2 expression in the dorsal horn ipsilateral to the lesion. Up-regulation of KCC2 function by targeting 5-HT2A receptors, therefore, has therapeutic potential in the treatment of neuropathic pain induced by SCI but not by SNI.
-
Earlier studies indicate that the central nucleus of the amygdala (CeA) contributes to neuropathic pain. Here we studied whether amygdaloid administration of antioxidants or antagonists of TRPA1 that is among ion channels activated by oxidative stress attenuates nociceptive or affective pain in experimental neuropathy, and whether this effect involves amygdaloid astrocytes or descending serotonergic pathways acting on the spinal 5-HT1A receptor. The experiments were performed in rats with spared nerve injury (SNI). ⋯ The results suggest that injury-induced amygdaloid oxidative stress that drives TRPA1 promotes neuropathic pain behavior. This pronociceptive effect involves suppression of medullospinal serotonergic feedback-inhibition acting on the spinal 5-HT1A receptor. While the CeA is involved in mediating the nerve injury-induced pronociception, it may not be a critical relay for the recruitment of medullospinal feedback-inhibition.
-
Neuropathic pain affects multiple brain functions, including motivational processing. However, little is known about the structural and functional brain changes involved in the transition from an acute to a chronic pain state. Here we combined behavioral phenotyping of pain thresholds with multimodal neuroimaging to longitudinally monitor changes in brain metabolism, structure and connectivity using the spared nerve injury (SNI) mouse model of chronic neuropathic pain. ⋯ Similarly, all global and local network changes that occurred following pain induction disappeared over time, with two notable exceptions: the nucleus accumbens, which played a more dominant role in the global network in a chronic pain state and the prefrontal cortex and hippocampus, which showed lower connectivity. These changes in connectivity were accompanied by enhanced glutamate levels in the hippocampus, but not in the prefrontal cortex. We suggest that hippocampal hyperexcitability may contribute to alterations in synaptic plasticity within the nucleus accumbens, and to pain chronification.
-
Neonatal pain has been suggested to contribute to the development and/or persistence of adult pain. Observations from animal models have shown that neonatal inflammation produces long-term changes in sensory neuron function, which can affect the susceptibility of adults to develop persistent pain. We used a preclinical model of transition to chronic pain, hyperalgesic priming, in which a previous inflammatory stimulus triggers a long-lasting increase in responsiveness to pro-algesic mediators, prototypically prostaglandin E2 (PGE2), to investigate if post-natal age influences susceptibility of adult rats to develop chronic pain. ⋯ In contrast, in females treated with TNFα at post-natal week 1, 2, 3, or 4, but not at 5 or 7, priming was present. This age and sex difference in the susceptibility to priming was estrogen-dependent, since injection of TNFα in 3-week-old males and 5-week-old females, in the presence of the estrogen receptor antagonist ICI 182,780, did produce priming. These results suggest that estrogen levels, which vary differently in males and females over the post-natal period, until they stabilize after puberty, impact pain as an adult.