Neuroscience
-
To assess motor cortex neurophysiology, including the mechanisms of neuroplasticity, transcranial magnetic stimulation (TMS) is typically applied to the motor "hotspot"- the optimal site for inducing a twitch in a given target muscle. It is known that the effects of suprathreshold repetitive TMS (rTMS) spread along functional connections beyond the specific cortical stimulation target, and yet, it is unknown whether the aftereffects of subthreshold intermittent theta-burst stimulation (iTBS), an ultra-high frequency patterned rTMS protocol, extend beyond the targeted muscle. We investigated whether and to what extent iTBS induces changes in the cortical output to other intrinsic hand muscles with adjacent cortical representation to the target. ⋯ Surprisingly, the MEP modulation was greater in APB, even when controlling for the baseline MEP amplitude. These results indicate that iTBS modulation of cortico-spinal excitability extends beyond the representation of the targeted muscle. Results have implications both for how iTBS may be used in clinical treatment and for the safety guidelines for the application of iTBS.
-
Reactivation processes are fundamental for procedural memory improvement. Targeted memory reactivation (TMR) influences memory consolidation through the re-exposure to certain perceptual components present in a previous phase of associative learning. On the other hand, motor imagery (MI) affects procedural skills through a repeated mental simulation of a pre-learned movement without physically moving. ⋯ It was compared to four conditions: (i) MI alone, (ii) MI during an incompatible sound stimulation, (iii) a mere video viewing and (iv) an auditory TMR during a video viewing. Results showed that the TMR + MI condition determined the largest early performance improvement as indexed by the combined measure of speed and accuracy (number of correct sequences typed in the task). We propose that TMR may enhance the effectiveness of MI protocols, and that MI could represent an optimal time window during wakefulness to take advantage of the effects of TMR.
-
In pragmatic language, there is an intentional distinction between the literal meaning of what is said, and what the speaker actually means. Previous neuroimaging investigations of pragmatic language have contrasted it with literal language; however, such contrasts may have been confounded by the higher levels of ambiguity in pragmatic language. Here, we used functional magnetic resonance imaging (fMRI) to compare pragmatic sentences (specifically requiring the interpretation of nonliteral meaning in the form of hints) with unintentionally ambiguous scenarios. ⋯ In contrast, the pragmatic scenarios drew on anterior temporal, superior parietal lobule, in addition to precuneus. While no effect of gender was found for unintentionally ambiguous stimuli, females showed greater activity than males within mPFC and inferior frontal gyrus (IFG) for pragmatic scenarios - regions thought to be involved in cognitive and affective empathy, respectively. Findings suggest that while areas underpinning ToM are sufficient to support meaning derivation in the context of ambiguity, reasoning about pragmatic intent is more reliant on access to self-referential memory.
-
We recently found that non-stressed female rats have higher basal prepro-orexin expression and activation of orexinergic neurons compared to non-stressed males, which lead to impaired habituation to repeated restraint stress at the behavioral, neural, and endocrine level. Here, we extended our study of sex differences in the orexin system by examining spine densities and dendritic morphology in putative orexin neurons in adult male and female rats that were exposed to 5 consecutive days of 30-min restraint. Analysis of spine distribution and density indicated that putative orexinergic neurons in control non-stressed females had significantly more dendritic spines than those in control males, and the majority of these were mushroom spines. ⋯ Thus, reduced dendritic complexity of putative orexinergic neurons is observed in males but not in females after 5days of repeated restraint stress. This morphological change might be reflective of decreased orexin system function, which may allow males to habituate more fully to repeated restraint than females. These results extend our understanding of the role of orexin neurons in regulating habituation and demonstrate changes in putative orexin cell morphology and spines that may underlie sex differences in habituation.
-
Emotional faces draw attention and eye-movements towards them. However, the neural mechanisms of attention have mainly been investigated during fixation, which is uncommon in everyday life where people move their eyes to shift attention to faces. Therefore, the current study combined eye-tracking and Electroencephalography (EEG) to measure neural mechanisms of overt attention shifts to faces with happy, neutral and angry expressions, allowing participants to move their eyes freely towards the stimuli. ⋯ This response appears after saccades towards the faces. Therefore, emotion modulations only occurred after an overt shift of gaze towards the stimulus had already been completed. Visual saliency rather than emotional content may therefore drive early saccades, while later top-down processes reflect emotion processing.